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F2.0 STRENGTH OF LAMINATED COMPOSITES,

The strength of laniinated composites must be related to the individual
lamina [1]. This is because it is easier to determine where nonlinearity and
degradation begin to occur on a unidirectional test specimen than on some
general laminate test. For this reason the trend in determining the strength
of advanced composites is to establish strength allowables for the orthotropic
lamina and then to utilize analytical methods to predict the yield or the

ultimate strength of the laminate.
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2.1 YIELD STRENGTH,

The available yield strength theories for laminated composites are at
best tentative at this time [2]. Only a minimal amount of test data is
available to substantiate any of the yield theories for advanced composites.

If the yield point is defined as the onset of inelastic action, it is
apparent that the prediction of the yield strength of an orthotropic lamina is a
linear problem. Several yield theories of failure have been hypothesized for
anisotropic materials, of which two will be discussed (the distortional energy
theory and the maximum strain theory).

Before the discussion of yield theories, the basic difference between
the yield surfaces for an isotropic and for an orthotropic or anisotropic
material must be explained. For an isotropic material, any biaxial stress

state, O Gy’ Tx_y, may be resolved into two principal stresses, A and

p

o) 9 and some angle, 8; therefore, a plot of the principal stresses that cause

p
yield will give the required yield surface. The result is a two-dimensional

figure with T, and o, as axes, When considering the yield surface for an
p p

orthotropic lamina, the stresses must be referred to the lamina principal axes;
therefore, for biaxial stress states three stress components may appear in the

yield criteria. The resulting yield surface will appear as a three-dimensional

figure with the directions of oy, 0y, and 74, as reference coordinates

(Fig. F2.1-1),
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2.1.1 DISTORTIONAL ENERGY
THEORY,

Cira, Norris, and Hill
independently developed their

generalizations of the von Mises

isotropic distortional energy yield

criterion,

(0'1» 0’2)?+ (0'2 - 0'3)2+ (0’3 -0';)2

+6 (1 + 1o + 7y = 2¢702 » (F2.1-1)

to account for the anisotropy of their

FIGURE F2.1-1, THREE- respective problems {3]. Hill was

DIMENSIONAL YIELD SURFACE FOR
AN ORTHOTROPIC LAMINA -concerned with the tendency of isotropic

metals to exhibit certain anisotropic properties when undergoing metal working
involving severe strains. Hill claimed he had & physical interpretation of von
Miges' "'plastic potential," “;hich allowed him to generalize von Misee." yield
criterion for application to anisotropic metals. The plastic potential or yield
criterion has the form

2f (agg) = Ag (0p - o) 2+ Ay (03 ~ a2+ Ay (o) - 0p) 2+ 28,7p5°

(F2.1-2)
+ 2A57'312 + ZAsTnz =1
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where

2f (oij) = the plaétic potential,

2A; = (Fy 2+ (Fp 2-(Fp7?,
2A, = (F3) 2+ (Fy 2~ (Fy)~t,
2A; = (Fy 2+ (Fp) %- (Fa).‘2 ,
24, = (Fy) % ,
2A; = (Fg) %

and
28, = (Fp) % ,

Fy, F,y, and F3 are determined from either uniaxial tension or compression
tests, and Fy;, Fj3, and Fgy; are determined from pure shear tests.

Tsai [2] adapted this criterion as a yield and failure criterion for
laminated composites. The failure criterion for a laminated composite is
based on the strengths of the individual orthotropic lamina referred to the
lamina principal axes since the yield strengths are established experimentally

with reference to these axes. The Hill criterion reduces to

2 2
1] 1 o g 2
—1—) il (Uz ) - (112—> =1 (F2.1-8)
a r 0'1 0'2 (72 le
ty y iy y y

for an orthotropic material in plane stress., Note that

a
1y (F2. 1-4)

r (rzy



Also,

and 2 directions for the orthotropic lamina, and "'12y

stress.

4

and o
2y
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are the tensile or compressive yield strengths in the 1

is the shear yield

The yield surface is either an ellipsoid or sphere, depending on r,

when plotted in a three-dimensional space (Fig, F2.1-2).

2. 1‘2

MAXIMUM STRAIN CRITERIA,

The maximum strain yield criteria presented here should not be

confused with the maximum principal strain yield criteria for isotropic

materials [2]. The strain components in the orthotropic lamina must be

referred to the lamina principal axes; therefore, it is possible for three

strain components to appear in the yield criteria,

(F1. 2-3) with the strains equal to the yield strains:

The maximum strain yield criteria may be developed from equation

b

€
ly

Ezy

Y12

¥

04

T2

. (F2,1-5)

Thus, equation (F2. 1-5) gives the envelope of stresses which produce the

yield strains in the lamina.

made if 7y,=0 is assumed. Then,

- and

€
ly

I

81101 + S1202

S1201 + Sge0

A two-dimensional plot of the equation may be

(F2. 1-6)
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uﬁ,/nz.\,

a fa 1y

FIGURE F2,1-2, HILL YIELD SURFACE
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(F2.1-7)

Equations (F2, 1-7) are the equations of two lines in the oy - 03 coordinate

system which define yield of an orthotropic lamina, After defining the yield

strengths as

-
o = =
ly ~ 8y y

and

€2
¥y
Yy Sp

1]
it

) fzy En

equations (F2, 1-7)

€y
‘_’1_=_1§2L_
ag €
2y ] €2y Snp

and [

(F2. 1-8)

may be put in a form similar to the Hill equation:

€4

Y Sp (o

€ S g
zy 12 ly

(F2.1-9)
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Equations (F2, 1-7) may be plotted on a 0y - 6, set of coordinates since it was
assumed that the shear stress component, 74, was zero. Such a plot might

appear as shown in Fig. F2. 1-3.

&2

FIGURE F2,1-3. LAMINA YIELD SURFACE
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2.2 ULTIMATE STRENGTH,

Until recently, attempts to predict the ultimate or rupture load for a
laminate were based on linear theory; that is, the laminate ultimate load was
based upon the assumption that the laminate stress-strain response is linear
to failure or that upon yield of a constituent lamina, some (or all) of the
lamina moduli are reduced to some arbitrarily small value or set equal to
zero. Recently, some computer programs have been written with relatively
simple techniques, and new methods that determine the ultimate strength of
laminates have been developed. These programs and methods are usually for
specialized laminates, and sufficient test data are not available at this time to

verify their accuracy for general use.
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