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3.2 CONICAL SHELLS.

This section recommends practices for predicting buckling of uni-
form stiffened and unstiffened circular conical shells under various types of
static loading and suggests procedures that yield estimates of static buckling
loads which are considered to be conservative.

Many studies have been conducted of the buckling of conical shells
under various loading conditions. Knowledge of the eclastic stability of conical
shells, however, is not as extensive as that of cylindrical shells. Whereas
the behavior of the two types of shells appears to be similar, significant
differences in experimental results remain unexplained. Frequently, there
are insufficient data to cover the wide range of conical-shell geometric param-
eters. In addition, some important loading cases and the effects of edge con-
ditions remain to be studied. Some of these problems can be treated by digital

computers. One such program is given in References 1 and 2.

3.2.1 ISOTROPIC CONICAL SHEILLS.

The following are the recommended design procedures for isotropic
conical shells under axial compression, bending, uniform hydrostatic pressure,

and torsion, along with those for combined loads.

3.2.1.1 Axial Compression.

For conical shells under axial compression, there is considerable
disagreement between experimental loads and the loads predicted by theory.
These discrepancies have been attributed to the clfects of imperfections of the
structure and of edge-support conditions different from those assumed in the
analysis, as well as to shortcomings of the small-deflection theory used.

A theoretical analysis [3] indicates that the critical axial load for

long conical shells can be expressed as



Section C3.0
December 15, 1970
Page 62

2
P =q 21 Et? cos? o (1)

cr ’ 3(1-“2)

with the theoretical value of y equal to unity. Expériments [4,5] indicate
that within the range of the geometries of the tested specimens, there is no
apparent effect of conical-shell geometry on the correlation factor. There-
fore, 7y can be taken as a constant. At present, it is recommended that v

be taken as the constant value.
v =0.33 (10 deg < a < 75 deg) , (2)

which gives a lower bound to the experimental data. Buckling-load coefficients
for cone semivertex angles greater than 75 deg must be verified by experiment
because data are not available in this range. For o < 10 deg the buckling load
coefficient can be taken as that of a cylindrical shell having the same wall thick-
ness as the cone and a length and radius equal to the slant height and average
radius of curvature of the cone, respectively.

No studies have been published on the compressive buckling of
conical shells in the yield region. Because the nominal stress level in a conical
shell varies along its length, the effects of plasticity in conical shells are likely
to differ from those in cylindrical shells. A conservative estimate of plasticity
effects in conical shells could be obtained, however, if the reduction factors
for cylindrical shells are used (Paragraph 3.1.1.1). The secant and tangent

moduli should correspond to the maximum membrane compressive stress

. - P (3)
max 2rpy t cos’ a
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Figure 3.2-1 is an alignment chart devised to determine the critical
axial force (Pcr) from equation (1) where the shell thickness (t) and the
semivertex angle («) are known. This nomograph is applicable in the elastic
range for aluminum alloy.

From equations (1) and (3) the maximum membrane compressive

stress is

t
=v E — g .
Cfcr oY o COS o (4)

Figure 3.2-2a is a nomograph of equation (4) to determine the critical axial
stress when the shell thickness, small radius, and semivertex angle are known,
The following example shows the use of the nomograph. A conical shell has a
thickness (1) of 0,06 in., a small radius (r;)} of 40 in., and a semivertex
anele of 60 deg.  Determine the eritical compressive strees resulting from an
axial force. On the nomograph of Figure 3.2-2 join 40 on the r scale with
0. 06 on the t scale and extend the line until it meets line QR . From this
point draw a linc to 60 deg on the seale. This line interscets the Top scale
at 2600 psi, which is the critical buckling stress.

Ficurce 3. 2-2b is uscful if the stress falls into the plastic range for

the three matcrials shown.
3.2.1.2 Bending.

For conical shells in hending, buckling occurs when the maximum
compressive stress at the small end of the cone is equal to the critical com-
pressive stress of a cylinder having the same wall thickness and the same local

radius of curvature. The buckling moment is given by

03

M _ T Et? r, cos?

cr [3(1-p?)]1/2 (5)



Section C3. 0
December 15, 1970

Page 64
~ tlin) P, ibs} al®
03 —
1000 75
i o
- =~ 10
B
- -
10 000
. 8
.10 .
80
7 100 000 =
20 - - 50
m - — 40
1 000 000 B
- 30
- 20
50 L 10

FIGURE 3.2-1. CRITICAL AXIAL LOAD FOR LONG CONICAL SHELL
(ALUMINUM ALLOY MATERIAL), E =10.4 % 105 psi

with the theoretical value of y equal to unity. Based on experimental data [6]

it is recommended that the coefficient v be taken as the constant value,

v = 0,41 (10deg < a < 60 deg) . (6)
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FIGURE 3.2-2a. CRITICAL COMPRESSIVE STRESS FOR LONG CONICAL
SHELL (ALUMINUM ALLOY MATERIAL), E =10.4 x 10°% psi
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Buckling load coefficients for cone semivertex angles greater than
60 deg must be verified by test. Buckling coefficients for equivalent cylindrical
shells in bending can be used with semivertex angles less than 10 deg. For
conical shells subjected to plastic stresses, the correction suggested for conical
shells in axial compression may be used.

The buckling moment Mcr may be obtained from the nomograph of
Figure 3.2-3, when the shell thickness t, the small radius r;, and the
semivertex angle « are known. The lines 1 and 2 on Figure 3. 2-3 show the
proper sequence of parameter alignment. This illustration can also be used for

design purposes when a moment is given and a required thickness is needed.

3.2.1.3 Uniform Hydrostatic Pressure.

The theoretical buckling pressure of a conical shell which buckles
into several circumferential waves (n > 2) can be expressed [7] in the approxi-

mate form

0.92 E
o, - L2Ey, . ™

Experiments [8, 9] show a relatively wide scatter band for the value

of v but indicate that the constant value

v = 0.75 (8)

should provide a lower bound for the available data. Figure 3. 2-4 gives the
solution to equation (7) for values of p/t and L/p. The curves are appli-

cable in the elastic range only.
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For conical shells which buckle in the plastic range, the plasticity
correction for moderate-length cylindrical shells may be used for the range of
the conical shell geometries considered. The procedure is to use the E,
curves in Paragraph 3. 1. 6. The moduli should correspond to the maximum

circumferential compressive stress at the large end of the conical shell:

Omax ~ Por (py/t) . (9)

3.2.1.4 Torsion.

An approximate equation for the critical torque of a conical shell
[10] is

T, =52.87D (%)l/z (f)s/‘ | (10)

where

I =TIycCo8 {1+[1/2(1+ _Ez)] 1/2_[1/2<1+ f:‘)] -!/2} _;_: .
1
(11)

The variation of r/r, cos @ with r;/r, is shown in Figure 3.2-5. For design
purposes it is recommended that the torsional-moment coefficient in equation

(10) be taken as the constant value
v = 0.67 . (12)

Figure 3. 2-6 is a nomograph devised to determine the buckling

torque of a conical shell (equation 10) when t, t/£, and r/t are known.
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FIGURE 3.2-5. VARIATION OF r/ry cos & WITH r{/ry

No data are available for the plastic buckling of conical shells in
torsion. The plasticity factor used for cylindrical shells in torsion should,
however, give conservative results. The secant modulus should correspond to

the maximum shear stress at the small end of the cone, given by

cr .
- 13
Ter 2m r® t (13)
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FIGURE 3.2-6. ALLOWABLE TORQUE FOR CONICAL SHELL
(E =10.4 x 108)

3.2.1.5 Combined Loads.

I. Pressurized Conical Shells in Axial Compression.

The theory for predicting buckling of internally pressurized conical
shells under axial compression [11] differs from that for cylindrical shells in

two respects. First, the axial load-carrying capacity is a function of internal
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pressure and exceeds the sum of the load-carrying capacity of the unpressurized
shell and the pressure load at the small end of the cone. Second, results of
analyses for conical shells indicate that edge conditions at the small end have a
significant effect on the axial load-carrying capacity. The results are indepen-
dent of edge conditions at the large end for long cones.

There are insufficient data to warrant design use of the entirc in-
crease in load-carrying capacity of internally pressurized conical shells. It
is therefore recommended that the critical axial compressive load for a pres-
surized conical shell be determined by adding the pressurization load « rlz p
at the small end of the cone to the compressive buckling load at the conical
shell. Then

er N 3(1-p2)

p = [———L— + A'y] (21 E® cos® @) + 7 1'12 p . (14)

The unpressurized compressive-buckling coefficient v is equal to 0.33, and
the increase in the buckling coefficient Ay for the equivalent cylindrical shell
is given in Figure 3, 2-7. The critical axial load may be increased above the

value given by equation (14), however, if the increase is justified by test.
II. Pressurized Conical Shells in Bending.

As in the case of unpressurized conical shells subjecled to pure
bending, no theory has yet been developed for pressurized conical shells under
bending. For conservative design, therefore, the design moment of the pres-

surized conical shell is written as

3

S R A :
press_[ +A’y]7rEr1 (t cos )2 + B=F

'J 3 1-4° 2

(15)
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FIGURE 3.2-7. INCREASE IN AXIAL COMPRESSIVE BUCKLING-
STRESS COEFFICIENTS OF CONICAL SHELLS RESULTING
FROM INTERNAL PRESSURE
The unpressurized compressive-buckling coefficient y is equal to 0.41, and
the increase in buckling coefficient Ay for the equivalent cylindrical shell
can be obtained from Figure 3. 2-7.

III. Combined Axial Compression and Bending for Unpressurized and '
Pressurized Conical Shells.

Some experimental interaction curves have been obtained for un-
pressurized and pressurized conical shells under combined axial compression

and bending [6]. These investigations indicate that the following straight-line
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interaction curve for conical shells is adequate for design purposes:

=1
Rc + Rb (16)
where
P
Rc = p (17)
cr
and
M
Rb Y . (18)
cr

For equations (17) and (18),

P =~ applied compressive load,

Pcr = critical compressive load for cone nol subjecled Lo bending,
obtainced from equations (1) and (2) for unpressurized
shells, and from cquation (14) [or pressurized shells.

M = applied bending moment,

Mcr ~ critical moment for cone not subjected lo axial compres-
sion, as obtained from equations (5) and (6) for unpres-
surized .shells, and {rom equation (15) for pressurized
shells.

If actual test values of PC and M are used, the straight-linc interaction
r cr
curve may no longer be conservative, and the entire interaction curve must be

substantiated by test.
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IV. Combined External Pressure and Axial Compression.

For a conical shell subjected to combined external pressure and .

axial compression, the relationship

Rc + Rp =1 (19)

is recommended for design purposes. Where

o :
R = o0 (20)
P PCI'

Pcr is given by equation (7) and (8), and Rc is given by equation (17).
V. Combined Torsion and External Pressure or Axial Compression.

For conical shells under combined torsion and external hydrostatic

pressure the following interaction formula is recommended for design purpose:

= 1
Rt + Rp 1 (21)
with
T
Rt =T (22)
cr

where Tcr is given by equations (10), (11), and (12), and Rp is given by

equation (20).

For conical shells under combined torsion and axial compression,

the following interaction formula is recommended for design purposes:

R +R =1 (23)
t ¢ A

where Rt is given by equation (22) and Rc by equation (17).
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3.2.2 ORTHOTROPIC CONICAL SHELLS.

The theory of buckling of orthotropic conical shells is valuable in
determining adequate buckling criteria for shells which are geometrically
orthotropic because of closely spaced meridional or circumferential stiffening,
as well as for shells constructed of a material whose properties differ in the
two directions. An extension of the Donnell-type isotropic conical shell theory
to conical shells with material orthotropy is given in Reference 12, whereas
buckling of conical shells with geometric orthotropy is considered in Reference
13. Numerical results are limited to only a few values of the many parameters,
but these provide the basis for tentative generalizations. Few cxpcriments
have been conducted. Following are the design recommendations based on the
limited data available. The computer programs discussed in Subscction 3.4

are also recommended.

3.2.2.1 Uniform Hydrostatic Pressure,

I. Constant-Thickness Orthotropic Material.

A limited investigation [14] indicates that the relationship between
the theoretical buckling pressures of an orthotropic conical shell and of the so-
called equivalent orthotropic cylinder is similar to that between the buckling
pressures of an isotropic conical shell and of the equivalent isotropic cylinder.
In both cases the equivalent cylinder is defined as one having a length equal to
the slant length, L, of the conical shell; a radius equal to the average radius
of curvature, p , of the conical shell, and the same thickness. Thus, the
theoretical hydrostatic buckling pressures for supported moderate-length

orthotropic conical shells [15, 16] can be expressed as

B 0.86y . B [\
s S e ()
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which reduces to the corresponding expression for the isotropic cone when

(25)

Only limited experimental data exist for conical shells constructed
for an orthotropic material [17]. In the absence of a more extensive range of
test results, it is recommended that the value of the correlation coefficient vy

be taken as 0. 75 for both orthotropic and isotropic cones.
I1. Stiffened Conical Shells.

The stability of conical shells stiffened by rings under uniform
hydrostatic pressure has also been investigated [13, 18]. In these investiga-
tions, all rings were assumed to have the same cross-sectional shape and area
but could have variable spacing. The approximate buckling formulas given in
these references are not recommended for use in design until a larger amount

of substantiating test data becomes available.
3.2.2.2 Torsion.
I. Constant-Thickness Orthotropic Material.

The investigation reported in Reference 19 indicates that the
theoretical buckling torque of an orthotropic conical shell is approximated by
that of an equivalent orthotropic cylinder having a length equal to the height, £,

of the conical shell and having the same thickness and radius given in equation

(11). Refer to Figure 3. 2-5 for the variation of —I — with & .
r, COosS o Try
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The critical torque of a moderate-length orthotropic conical shell

may then be approximated by the expression

E 5/8 F 3/8 12
0 8 t

5/4
T =4.57y =
1- 5/8 ) (
o CRUSEARS

)1/ 2 . (26)

N

A reduction factor of y = 0.67 (the value given for isotropic conical
shells) is recommended. The few data points available for fiberglass-reinforced
epoxy conical shells [17] yield a larger value of y but full wilhin the scatter

band for the isotropic shell of constant thickness.
II. Ring-Stiffencd Conical Shells.

Although no accurate theoretical calculations have heen ivade for
ring-stiffened conical shells in torsion, a few tests [17] indicate that when the
rings arc cqually spaced and have the same cross-sectioral shape and area, a
procedure similar to that for the materially orthotropic conical shell will yield
adequate results. The critical torque of such a ring-stiffened conical shell may
thus be approximated by the critical torque of a ring-stiffenced eylinder having
the radius, length, and thickness described above. The crilical torque of a

ring-stiffened cone with uniformly spaced rings is then given by

T . =457y (1._1:;515(:)5/8 (%)5/4 (%)1/2 (1 *770)5/” (27)

where (Fig. 3.2-8)
£ ! AL (;r B er)2 e ’
= w2y = | £ + 12(——)
n, = 12040 5 L8 "Lt t i (28)

and the factor +y is recommended to be taken equal to 0.67. The few available

test results also indicate a larger value of vy , but these again fall within the

scatter band for the isotropic conical shell of constant thickness.
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FIGURE 3.2-8. NOTATION FOR RING-STIFFENED CONICAL SHELLS
3.2.3 SANDWICH CONICAL SHELLS.

If the sandwich core is resistant to transverse shear so that its
shear stiffness can be assumed to be infinite, the previous results for isotropic
and orthotropic conical shells may readily be adapted to the analysis of sand-

wich conical shells by the following method.

3.2.3.1 Isotropic Face Sheets.

If the core is assumed to have infinite transverse shear stiffness
and no load-carrying capacity in the meridional or circumférential directions,
the analysis for isotropic conical shells of constant thickness may be used for
isotropic sandwich conical shells of constant thickness. An equivalent modulus

and thickness must be defined for the sandwich shell. The face sheets may be
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of different thicknesses and of different materials, subject to the restriction

that the Poisson's ratios of the two materials be identical. If the stretching
and bending stiffnesses of such an isotropic sandwich shell are equated to the

stretching and bending stiffnesses of an equivalent constant-thickness isotropic

shell having the same neutral surface dimensions, then

Et =Bt + Et (29a)
—_8 .
(L) _ h o
2 - 1 < . ‘,2.;:))
Eiyy Ep

Then the modulus and the thickness o ‘he equivalent constant-thickness isotro-

pic shell are

- WAl o

. b A ) (Jﬁa}
Bt J_lzi.tz_
Exty Fyty

oy [ ety .

E = _&&:—.&.‘_ . 5'30}\)

i

The buckling loads of the isotropic sandwich shell may now be *aken
as the buckling loads of the equiv.ilent isotropic shell of conetant thicknes.:. as
listed below.

Load Paragraph Hefercnce
Axial Compression 3.2.1.1
Bending 3.2.1.2

Uniform hydrostatic pressure 3.2.1.3
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Load Paragraph Reference

Torsion 3.2.1.4
Pressurized conical shells in axial compression 3.2.1.5-1
Pressurized conical shells in bending 3.2.1.5-11
Combined axial compression and bending for

unpressurized and pressurized conical shells 3.2.1,.5-II1
Combined external pressure and axial compression 3.2.1.5-1V
Combined torsion and external pressure or axial

compression 3.2.1.5-V

In the absence of experimental data, the reduction or correlation
factors for isotropic shells of constant thickness are recommended for isotro-

pic sandwich shells.

3.2.3.2 Orthotropic Face Sheets.

If the core is assumed to have infinite transverse shear stiffness
and no load-carrying capacity in the meridional or circumferential directions,
the available results for conical shells of constant-thickness orthotropic mate-
rial may be used for sandwich conical shells having orthotropic faces. The
face sheets may be of different thicknesses but of the same orthotropic material
as long as their principal axes are oriented in the same direction. The same
procedure as for sandwich shells having isotropic face shcets leads to the
following thickness and material properties of the equivalent materially ortho-

tropic conical shells of constant thickness:

T=—212h : (31a)
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-5 _ _0 - G — _t1_+_32. (31b)
— — G — .
Es E6 t
ﬁ -
S .0 _y ) (31c)
“s “9

The buckling load of the orthotropic sandwich conical shell is then
the buckling load of the equivalent conical shell of orthotropic material having
constant thickness. The reduction or correlation factors for isotropic shells
of constant thickness are recommended for use for sandwich shells with ortho-

tropic face sheets.

3.2.3.3 Local Failure.

Thus far, only overall buckling has been considered as a criterion
of failure. Other modes of failure are possible, however. For honeycomb-
core sandwich shells, failure may occur because of core crushing, intracell
buckling, and face wrinkling. The use of relatively heavy cores (6 > 0. 03)
will usually prevent core crushing. Lighter cores may prove to be justified as
data become available. No studies have been conducted that predict localized
buckling failures under stress states that are a function of position. If we
assume, however, that the stress state varies only slightly over the buckled
region, the following approximate equations developed for cylindrical shells
can be used to predict failure from intracell buckling and face wrinkling of
heavy honeycomb-core sandwich conical shells with equal-thickness face sheets

under uniaxial loading. For intracell buckling

t 2
. ,E)
US = 2.5 ER (S (32)
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where S is the core cell size expressed as the diameter of the largest in-
scribed circle and
4E_E

E = f “tan (33)

R ‘ 2
ﬁf+ﬁtan )

where Ef and E tan are the elastic and tangent moduli of the face-sheet

material. If initial dimpling is to be checked, the equation

t 2
_ _f)
o = 2.2 ER (s (34)

should be used. The sandwich will still carry loads if initial dimpling occurs.

For wrinkling

o =0.50(E E G )/ (35)
S sSecC A SZ

where Ez is the modulus of the core in a direction perpendicular to the
plane of the core, and GSZ is the transverse shear modulus of the core. If
biaxial compressive stresses are applied to the sandwich, the coefficients of
equations must be reduced by the factor (1 +£3)~!/3 | where f is the ratio
of minimum to maximum principal compressive stress in the face sheets,
Wrinkling and intracell-buckling equations which consider strength
of bond, strength of foundation, and initial waviness of the face sheets are
given in References 20, 21, and 22,
The plasticity correction factor given for isotropic conical shells
in axial compression xﬁay be applied also to isotropic sandwich conical shells.
The factor is applicable to sandwich cones with stiff cores and becomes some-

what conservative as the shear stiffness of the core is decreased [23].



