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C 1.0.0 COLUMNS

C 1.1.0 1Introduction

In general, column failure may be classed under two headings:
(1) Primary failure (general instability)
(2) Secondary failure (local instability)

Primary or general instability failure is any type of column failure,
whether elastic or inelastic, in which the cross-sections are trans-
lated and/or rotated but not distorted in their own planes. Secondary
or local instability failure of a column is defined as any type of
failure in which cross-sections are distorted in their own planes but
not translated or rotated. However, the distinction between primary
and secondary failure is largely theoretical because most column fail-
ures are a combination of the two types,

Fig. € 1.1.0-1 illustrates the curves for several types of
column failure.
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’///F_- Instability
q

]

rrf
0
(¢]

Modified ‘
Johnson Parabola

Critical Stress, F,

0 a b
Slenderness Ratio, L'/p
Fig. € 1.1.0-1

L' represents the effective length of the column and is dependent
upon the manner in which the column is constrained, and p is the mini-
mum radius of gyration of the cross-sectional area of the column.

For a value of L'/p in the range "a'" to "b", the column buckles
in the classical Euler manner. If the slenderness ratio, L'/p , is in
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C 1.1.,0 Introduction (Cont'd)

the range of"0"to "a", a column may fail in one of the three following
ways:

(1) Inelastic bending failure. This is a primary failure
described by the Tangent Modulus equation, curve mn, This
type of failure depends only on the mechanical properties
of the material,

(2) Combined inelastic bending and local instability. The
elements of a column section may buckle, but the column
can continue to carry load until complete failure occurs.
This failure is predicted by a modified Johnson Parabola,
"pq", a curve defined by the crippling strength of the
section. At low values of L'/p the tendency to cripple
predominates; while at L'/ P approaching the point '"q",
the failure is primarily inelastic bending. Geometry of
the section, as well as material properties, influences
this combined type of failure.

(3) Torsional instability. This failure is characterized by
twisting of the column and depends on both material and
section properties. The curve '"rs" 1is superimposed on
Fig, € 1.1.0-1 for illustration. Torsional instability is
presented In Section C 1.5.0,

These curves are discussed in detail in Sections C 1.3.0, Cl1.3.2, and
C 1.5.0. For a given value of L'/P between (0) and (a), the critical
column stress is the minimum stress predicted by these three failure
curves. '

Each of the Tangent Modulus curves has a cutoff stress at low
L'/e wvalues (point "m"). This cutoff stress has been chosen as
Fg o for ductile material, and is the stress for which E./E = 0.2.
Et is the Tangent Modulus and E is the Modulus of Elasticity.
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C 1.2.0 Long Columns (elastic buckling)

A column with a slenderness ratio (L'/ P) greater than the
critical slenderness ratio (point "a" Fig. C 1.1.0-1) is called a
long column. This type of column fails through lack of stiffness
instead of a lack of strength.

The critical column load, P.,as given by the Euler formula for a

pin ended column (L' = L) of constant cross section, is
p = ’E1
C 2 ------------------------ ® " R T = B oEF s s e e 1
where

E = Young's Modulus
I = Least moment of inertia
L = Length of the column

End conditions - The strength of a column is in part dependent on the
end conditions; in other words,the degree of end-fixity or constraint,
A column supported at the ends so that there can be neither lateral
displacement nor change of slope at either end is called fixed-ended,

A column, one end of which is fixed and the other end neither laterally
supported nor otherwise constrained, is called free-ended. A column,
both end-surfaces of which are flat and normal to the axis, and bear
evenly against rigid loading surfaces, is called flat-ended. A column,
the ends of which bear against transverse pins, is called pin-ended.

The critical load for long columns with various end conditions as
shown in Fig. C 1,2.0-1 are:
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Fig. C 1.2.0-1

The effective column lengths L' for Fig. C 1,2,0-1 are2Ly, 0.7 Lg,
and 0.5 Ly respectively. For the general case, L' = L/yT, where ¢
is a constant dependent on end restraints.

Fixity coefficients (c) for several types of elastically restrained
columns are given in Figs. C 1.2.0-2 through C 1.2.0-4,

Limitations of the Euler Formulas. The elastic modulus (E) was used
in the derivation of the Euler formulas, Therefore, all the reasoning
is applicable while the material behaves elastically. To bring out
this significant limitation, Eq. 1 will be written in a different form.
By definition, I = Ap“ , where A is the cross-sectional area and p

is its radius of gyration. Substitution of this relation into Eq. 1
gives

1 S L 7 ¥ T (5)

¢ (L')2 (LI)Z .
P

F, = == = e mmeemeeeaes (6)

¢ A L'Q

> )
The critical stress (F.) for a column is defined as an average stress
over the cross-sectional area of a colummn at the critical load (P.).
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For p=w , C =4,0
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Fig. C1.2.0-2 Fixity Coefficient for a Column with End Supports
Having a Known Bénding Restraint
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€ 1.2.0 Long Columns (Cont'd)
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C 1.3.0 Short Columms

Most columns fall into the range generally described as the short
column range. With reference to Fig. C 1.1.0-1 of Section C 1,1.0,
this may be described by 0 < L'/p < a. This distinction is made on
the basis that column behavior departs from that described by the
classical Euler equation, Eq. (6). The average stress on the cross-
section at buckling exceeds the stress defined by the proportional
limit of the material, The slenderness ratio corresponding to the
stress at the proportional limit defines the transition.

In the short column range a torsionally stable colummn may fafil
by crippling or inelastic bending, or a combination of both, as
described in Sections C 1.3.1 and C 1.3.2.
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C 1.3.1 Crippling Stress

When the corners of a thin-walled section in compression are
restrained against any lateral movement, the corner material can con-
tinue to be loaded even after buckling has occurred in the section.
When the stress in the corners exceeds its critical stress, the sec-
tion loses its ability to support any additional load and fails, The
average stress on the section at the failure load is called the
crippling stress F... Fig. C 1.3.1-la shows the cross-sectional dis-
tortion occurring over one wave length in a typical thin-walled sec~
tion. Fig. C 1.3.1-1b shows the stress distribution over the cross-
section just before crippling.

[N

Fcrit

(b)

Fig. ¢ 1.3.1-1

The empirical method for predicting the crippling stress of
extruded and sheet metal elements is presented in this section. This
crippling stress, F.., applies to extremely short column lengths and
indicates the beginning of short column failure. It constitutes the
column cut-off stress for sections composed of thin elements.

The crippling load of a member is equal to the product of the
crippling stress and the actual area of the member; however, in
calculating the crippling stress, the summation of the element areas
is not equal to the actual area of the member.

A common structural component is composed of an angle, tee, zee,
etc, attached to a thin skin. The buckling stress of the skin panel
is less than the crippling stress of the stiffener. Taking a thin
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C 1.3.1 Crippling Stress (Cont'd)

panel plus angle stiffeners at spacing, b, as shown on Fig. C 1.3.1-2,
apply a compressive load. Up to the critical buckling load for the
skin, the direct compressive stress is uniformly distributed. After

the skin buckles, the central portion of the plate can carry little

or no additional load; however, the edges of the plate, being restrained
by the stiffeners, can and do carry an increasing amount of load. The
stress distribution is shown in Fig. C 1.3.1-2,
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b e w—— —— —— — —

j———— b ———————
Q, stiffeners
Fig. € 1.3.1-2

For the purpose of analysis, the true stress distribution shown
by the solid line in Fig., C 1.3.1-2 is replaced by a uniform distribu-
tion as shown by the dotted lines. Essentially, an averaging process
1s used to determine the effective width, We, in which the stress, Fgq,
is held constant.

Notation

Foe = the crippling stress of a section,
feoen= the crippling stress of an element.

by, = effective width of an element,

bfn = flat portion of effective width of an element.

tn = thickness of an element. _

R = bend radius of formed stiffeners measured to the centerline.
Ry = extruded bulb radius.

We = effective width of skin.

E = Modulus of Elasticity,
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C 1.3.1 Crippling Stress (Cont'd)

Use of the crippling curves

I. The crippling stress, F.., at a stiffener is computed by
the following expression

Chntnf
F o o= (1)
cC 7, bntn

II. The method for dividing formed sheet and extruded stiffeners
into elements is shown in Fig. C 1.3.1-3.

b *-1

Yl lliis

= bf3 + .535 Ry + .535 Ro (:)-—'
f‘*bj"

7777A 7

S IILS SIS IS
o
X

/7

Formed . Extruded

Fig. C 1.3.1-3

ITI. Angle stiffeners have low crippling stresses as each leg is
in the one-edge-free condition and offers little support to the other

leg. The method of dividing such stiffeners into effective elements is
shown in Fig. C 1.3.1-4.

/]
3 4
_E b1=bf1+1.57R . ’
1
RS L §&\\\\\\V
Formed Extruded

Fig, C 1,3.1-4
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C 1.3.1 Crippling Stress (Cont'd)

IV. Certain types of formed stiffeners, as shown in Figures
c 1.3,1-5, ¢ 1.3.1-6, and C 1.3.1-7, whose radii are equal and whose
centers are on the same side of the sheet, require special considera-
tion. Table C 1.3.1-1 explains the handling of these cases.

by —~/ | ____I b, '__ bgo
£

R R
R R @R
bgy
Fig. C 1.3.1-5 Fig. C 1.3.1-6 Fig. C 1.3.1-7
When | And As shown
bf2 bgy in Fig. : Use
=0 =0 C 1.3.1-5 | by = 2.10R (one edge free)
<R =0 C 1.3.1-6 | b2 = 2.10R (one edge free)
>R =0 C 1.3.1-6 | by = bgyg + 1.07R (Avg. one & no edge free)
<R <R C 1.3.1-7 | by = 2.10R (one edge free, neglect bi)
>R <R C 1.3,1-7 | bp = bgy + 1,07R (Avg., one & no edge free,
neglect bi)
>0 >R C 1.3.1-7 | by = bgy + 1.07R (one edge free)
by = bgy + 1.07R (no edge free)

Table C 1.3.1-1

V. Special conditions for extrusions ég

Tl-bz 4b3~l

b
(a) 1 (0 (b)

‘_._bz_.4 Fig. C 1.3.1-8 “b

The crippling stress of an outstanding leg with bulb is 0.7 of the
value for the no-edge-free condition if Rp is greater than or equal
to the thickness of the adjacent leg (t1 Fig. C 1.3.1-8). When
Ry < tj, the outstanding leg shall be considered as having one edge
free.
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C 1.3.1 Crippling Stress (Cont'd)

for by > t, and < 3t»

bs t
I<F -.1 _i 2 neglect by; and Fee2 =

Avg. of no edge free and

A
X N —T. one edge free.
L, L
X
b \ for by > 3t2
1 JB)‘ Regular method.

Fig., C 1.3.1-9

VI. The effective width of sheet, in a sheet-stiffener combination
under compression,is determined from the plot of 2W,/t versus fseiff

(Fig. € 1.3.1-12).

Note the following special cases

one edge free

et . .381<3E3’>
kg? SE t t /chart (no edge
Y : 1 free)
}"we2’l"wel'4 ‘
One-Edge-Free Sheet

Fig. € 1.3.1-10 M, [
t t chart

no edge free

(a) If effective widths overlap,
reduce accordingly.

(b) Calculate as one or no edge
free as necessary.

e ] e

Effective Sheet with Large
Hat Stiffener

Fig. C 1.3.1-11
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C 1.3.1 Crippling Stress (Cont'd)

Effective width of stiffened sheet.

The effective width, (Wo), is the width of skin on either or both
sides of the stiffener acting at the stiffener stress level. This
stress level for the skin is obtainable only if there is no inter spot-
weld, or inter rivet buckling.

For calculating the effective width of sheet acting with the
stiffener the following equation is graphed on Fig. C 1.3.1-12

Zwe K (ES) skin 1
N A ) P 03
V(Eg) stiff fstiff
"Where
W, = effective width of skin (in)
t = thickness of skin (in)
Es = secant modulus at stress level of stiffener (ksi) .
f = stress (KSI)
K = 1.7 for simply supported case (no edge free)
K = 1.3 for one edge free,

For a sheet-stiffener combination of the same material, Eq. 2

becomes
2W, Eg
T'-K f ------------- L R N I I R I N S N N (3)

The procedure for determining the crippling stress for a sheet-
stiffener compression panel is
(1) Determine approximate stress level of stiffener.

£ - Load _ P
stiff Area Astiff

(2) Determine (W) by using foriff and Fig., € 1.3.1-12. This
e stiff
procedure is not applicable if the sheet i{s subjected to
inter spot-weld or inter rivet buckling.

(3) The crippling stress for the composite section is then
' calculated by Eq. 1.
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C 1.3.1 Crippling Stress (Cont'd)
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C 1.3.1 Crippling Stress (Cont'd)

Nondimensional Crippling Curves

Fig. C 1.3.1-13
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C 1.3.2 Column Curve for Torsionally Stable Sections

The column curves in Fig. C 1.3.2-3 are presented for the determi=-
nation of the critical column stress for torsionally stable sections.
The modes of failure are discussed in sections € 1.2.0 and C 1.3.0,.

These curves are Euler's long column curve and Johnson's modified
2.0 parabolas. They are to be used to determine the critical stress,
Fc, for columns at both room and elevated temperatures, It is noted
that the modulus of elasticity, E, corresponds to the temperature at
which the critical stress is desired.

The following sample problem is used to illustrate the use of
Fig. € 1.3.2-3 to determine the critical stress, F..

Illustrative problem P

ﬁ ‘r// 6061-T6 Square tubing 3.00 x .065

L = 60 inches (pin ended)
Temperature, T = 500° F (exposed % hr)

L E=7.9 x 108 psi @ 5000 F
Foy = 26.6 ksi @ 500° F
o °=1.730 in.

Determine the critical stress for the

A B
column.

Fig. C 1.3,2-1 P -
V Solution

Determine the crippling stress of the section by the method
outlined in Section C 1.3.1.

{‘-065 b 3 - .065 = 2.935 (Center line values used
here)

}

3.00 t =

.065
* F 3
cy _ <2.93€> 26.6 x 103 _, o,
Fig. C 1.3.2-2 E . 065 7.9 x 106

From Fig. C 1.3.1-13

rtlo

£ cen
fcy

= .64



Section C i
March 1, 1965

Page 19

C 1.3.2 Column Curve for Torsionally Stable Sections (Cont'd)

Use Eq. 1 Section C 1.3.1

Fee Zfcenbntn L 4(.66) (2.935) (.065) _

Fey  FeyZ batp 4(2.935) (.065)

64

Foe = .64(26.6) = 17,030 psi
The critical stress for the columm is obtained from Fig. C 1.3.2-3,

Fee 17,030
E ~ 7.9 x 100

2.16 x 1073

For pin-ended column
L=L"'=60 in.

60
1.73

Ll
- = 34.7
P

Then from Fig. C 1.3.2-3

F
EE =2.02 x 1073

Giving a critical stress of

Fe =2.02 x 1073 (7.9 x 10%) = 15,960 psi
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€ 1.3.2 Column Curves for Torsionally Stable Columns (Cont'd)

Fig. C 1.3.,2-3 Critical Stress for Torsionally Stable Columns




Section C1
July 9, 1964
Page 21

C 1.3.3 Sheet Stiffener Combinations

Flat panel

Sheet-stiffener combinations of flat compression panels may be
analyzed as columns. Each stiffener of the panel plus an effective
width of sheet acting at the stiffener stress constitutes an individual
column that is free to bend about an axis parallel to the panel sheet,
The sheet between stiffeners is continuous and offers considerable
restraint against stiffenmer failure about an axis perpendicular to the
sheet even though the sheet itself has buckled between stiffeners.

The stress distribution over the panel section after the sheet
has buckled is shown by the solid curve in Fig. C 1.3.3-1. The dotted
curve is the assumed stress distribution using the concept of effective

widths. The effective widths (W,) for torsionally stable and unstable
sections are given in Section C 1.3.1,

- b —iA

i T T

V’T’T B |
X

L _<_

Fig. € 1.3.3-1

The procedure for determination of the critical stress and load
on a sheet-stiffener compression panel is

(1) Determine the slenderness ratio L'/ p of the stiffener alone
where p s the radius of gyration of the stiffener cross-
section about a centroidal axis parallel to the sheet.

(2) From the crippling curve (Fig. C 1.3.1-13) determine F.. of
the stiffener cross-section. The value F../E is given by
Fo/E at L'/p =0 in Fig. C 1.3.2-3.
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C 1.3.3 Sheet Stiffener Combinations (Cont'd)

(3) Using the column curves (Fig. 1.3.2-3), with L'/p and Fee
determined in steps (1) and (2), record the value of Fe.
(Interpolate between curves as required)

(4) Determine the effective widths of sheet by using
Fig. € 1.3.1-12 where fstiff = Fe-

(5) Use Fig. C 1.3.3-3 to compute p of the stiffener plus
effective sheet,

(6) Re-enter the column curve (Fig. C 1.3.2-3) with new
L'/o and record the value of F..

(7) Repeat steps (4), (5), and (6) until satisfactory convergence
to a final stress, F,, is obtained. Convergence generally
occurs after two trials. F. i1s the critical stress of the
stiffened sheet.

(8) The critical load, P., is
PC.=Fc [Ast+tszweJ ........ Cereesanens eeees (1)

Where A . is the cross-sectional area of the stiffener.

Curved panels

Analysis of curved stiffened panels requires but a slight exten-
sion in procedure beyond that described for flat panels. Fig. C 1.3,3-2
shows a curved panel with the cffective widths of sheet that act with
the stiffeners.

b- ZWe

Fig. C 1.3.3-2

The load-carrying capacity of such a panel is equal to that of a
flat panel plus an additional load attributable to the effect of the
curvature of the sheet between the stiffeners, The critical load is

P, = Pflat + P

c curved
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C 1.,3.3 Sheet Stiffener Combinations (Cont'd)
or for Fig, C 1,3.3-2
Pe = (Fe) column (Ast + Z"tswe) + (E:f) curved (b - ?w9) ts

pancl

The critical stress (F.p)of the curved panel is calculated by the
equations of section C 3.0.0. Note that in computing this stress the
entire width "b" of the curved panel is used. Only the reduced width,
b - 2We, is used in calculating the load that is contributed by the
curved panel,
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C 1.3.3 Sheet Stiffener Combinations (Cont'd)
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C 1.4.0 Columns with Variable Cross Sections

The modified Fuler equation (tangent modulus) used to determine
the critical load of a prismatic, torsionally stable column not
subjected to crippling failure is

This section gives appropriate column buckling coefficients (m)
and formulas for comgutlng the Euler loads for varying cross-section
columns. Where m = z in Eq.

The following example is typical for calculating the critical
load of a stepped column.

P

Example ///;////
Given: f ! r_lg

E1 =10 x 12 psi (aluminum) 36 2

I = .30 in

Eo = 30 x 10° psi (steel) |

I, = .50 in%

A; = 1.94 in? ////////L_
Determine critical buckling load, P, TP

Fig. C 1.4.0-1

Solution:
a_12_ . BTy _ 10 x 10% (.30) . 4
L 36 EoIp 30 x 100 (.50) °

From Fig. C 1.4.0-2 m = ,545

.2
. (E¢ 1)1 _ . 14)2 (10)10% (.30) = 41,800 1b
c 2 . 545 2 ’

ml (36)

Stress level of aluminum section (max. of column)

f1 = 5— = ——2- = 21,600 psi

If f1 is below the proportional limit of the material in question,
then P, is the critical leoad of the column. However, if f] is above
the stress at the proportional limit, the tangent modulus (E;) at the
stress level must be used. This leads to a trial process to determine
the critical lcad of the column,.
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C 1.4.0 Columns with Variable Cross Sections (Cont'd)
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Fig, Cl1.4.0-2 Buckling Coefficient
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C 1.4.0 Columns With Variable Cross Sections (Cont'd)

Buckling Coefficient, m
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Fig. Cl1.4.0-3 Buckling Coefficient
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