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B7.3.4 STIFFENED SHELLS

Up to this point, only homogeneous, isotropic, monocoque shells have
been considered.

It is known that certain rearrangements of the material in the section
increase the rigidity; consequently, less material is needed, and this affects
the efficiency of design. Therefore, to obtain a more efficient and economical
structure, the material in the section should be arranged to make the section
most resistant to certain predominant stresses. Based on this premise,
stiffened structures were developed.

B7.3.4.1 General

Stiffened shells are commonly used in the aerospace and civil engineering
fields. The shell functions more efficiently if the meridional system, circum-
ferential system, or a combination of both systems of stiffeners is used. The
meridional stiffeners usually have all the characteristics of beams and are
designed to take compressional and bending influences more effectively than the
monocoque section. The circumferential stiffeners provided most of the lateral
support for the meridional stiffeners. However, circumferential stiffeners are
capable of withstanding moments, shears, and axial stresses.

If the stiffeners are located relatively close together, it appears logical
to replace the stiffened section with an equivalent monocoque section having the
corresponding ideal modulus of elasticity. Then the shell under discussion can
be analyzed as a monocoque shell, More details on this approach will be given
in later sections. The geometry included is for cylindrical, spherical, and
conical shells.

I Cylindrical Shell

This shell may have longitudinal stiffening, circumferential stiffening,
or both. Stiffening may be placed on the internal or external side of the surface,
or it may be located on both sides. If cut-outs are needed, they will usually
be located between the stiffeners.
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II Spherical Shell

This shell, if stiffened, will usually be stiffened in both meridional and
circumferential directions. The problem may be slightly more complicated in
the meridional direction because, obviously, the section that corresponds to
this direction will decrease in size toward the apex. This leads to the non-
uniform ideal thickness.

III' Conical Shell

This configuration structurally lies between cases I and II.

IV Approach for Analysis

The approach for analysis is similar for all shells. If only circum-
ferential stiffening exists, the structure can be cut into simple elements con-
sisting of cylindrical, conical, or spherical elements and rings as shown in
Figure B7, 3. 4-1 and, considering the primary loading, the interaction will be
performed as given in Paragraph B7.3.2. If only longitudinal stiffeners are
present, interaction of cylindrical panels with longitudinal beams (stiffeners)
will be performed, as shown in Figure B7.3.4-2.

If both circumferential and longitudinal stiffeners are present, the
panel will be supported on all four sides. The ratio of circumferential to
longitudinal distances between the stiffeners is very important. These panels
loaded with pressure (external or internal) will transmit the reactions to the
circumferential and longitudinal stiffeners.

There are no fixed formulas in existence for stiffened shells in general.
If the stiffeners are close together, the structure can be analyzed as a shell.
Then the stiffened section, for the purpose of analysis, should be replaced with
the equivalent monocoque section, which is characterized with the equivalent
modulus of elasticity. This replacement has to be done for both meridional and
circumferential directions. Both sections will possess ideal monocoque properties,
the same thickness, but different ideal moduli of elasticity. This leads to the
idea of orthotropic material. The concept of orthotropy will be studied in detail
in a later section, and a proper analysis procedure will be suggested. .
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FIGURE B7.3.4-1 CIRCUMFERENTIALLY STIFFENED SHELL

OR

FIGURE B7.3.4-2 LONGITUDINALLY STIFFENED SHELL

V Method of Transformed Section

This approximate method covers all variations of stiffened (and sand-
wich) construction, regardless of the kind of elements that make up the section.
This method shows how the combined section can be substituted with an
equivalent monocoque ‘section of the same stiffness. This idealized section
should be determined for the circumferential and meridional directions of the



Section B7. 3
31 January 1969
Page 83

shell. Then the analyst deals with an orthotropic, monocoque shell. The
analysis of orthotropic shells is similar to the analysis of monocoque shells
discussed previously, if certain corrections are entered into the formulas cited
at that time. The analysis for shells where the shear distortions cannot be
neglected is more complicated and will be explained in detail in the following
sections,

Assume a composite section (stiffened, sandwich, etc.) which consists
of different layers of material, as shown in Figure B7. 3. 4-3. Each layer (i) is
characterized by a modulus of elasticity (Ei) and a cross-sectional area (Ai) .

First select one convenient modulus of elasticity ( E*) as a basis for the equiva~
lent monocoque section which is to be established. Accordingly, all layers will
be modified and reduced to one equivalent material which is characterized with
E*, In this manner, the ideal transformed section ( Figure B7. 3. 4-4) is deter-
mined. It should be noted that, for the convenience of design, the thickness

(ti) of individual layers was not changed, but areas Ai become A i’“ . The same

modulus of elasticity (E*) now corresponds to every A? , thus making the entire
section homogeneous.
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FIGURE BT7. 3.4-3 ORIGINAL COMPOSITE SECTION
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FIGURE B7.3.4-4 TRANSFORMED SECTION

The necessary computations are presented in Table B7. 3. 4-1. Designa-
tions are given on the sketch included in the table.

The computations lead to the determination of the moment of inertia of an
equivalent section, The ideal monocoque rectangular section can be determined
as having the same bending resistance as the original section, For example, if
the section is symmetrical about the neutral axis, the thickness (t) can be found
for the new monocoque rectangular section of the same resistance as follows:

where b is the selected width of the new section.

B7.3.4.2 Sandwich Shells

The basic philosophy which the analyst applies to a sandwich structure
is preciéely the same as he would apply to any structural element. This
procedure consists of determining a set of design allowables with which the set
of applied loads is compared.
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TABLE B7. 3. 4-1 TRANSFORMED SECTION METHOD
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Generally, two types of "allowables' data exist. The first type is
determined by simple material tests and is associated with material more than
with geometry, and the second type is dependent upon the geometry of the ele-
ment. If, in a sandwich construction, the materials of construction are con-
sidered to be the core, facings, and bonding media, the basic material properties
would be associated with the properties of these three independent elements.

The second class of allowables data is distinguished by being dependent
upon configuration as well as upon the basic properties of the facings, core, and
bond media. This class of failure modes may be further subdivided into modes
of failure that include the entire configuration, and those modes that are localized
to a portion of the structure but still limit the overall load-carrying capacity.

The most important local modes of failure are dimpling, wrinkling, and
crimping. These modes of failure are dependent upon the local geometry and
upon the basic properties of the materials of the sandwich. The general modes
of failure generally are associated with the buckling strength of sandwich
structural elements. This will be discussed in Section B7. 4.

In this paragraph, the general design of sandwich shells under pure
static conditions will be presented. Two fundamental cases will be recognized:

1. Shear deformations can be neglected.

2. Shear deformations are extensive; however, shear can be taken by
the core. No new basic theories are required, only the application of established
theory. Once the shear deformation is properly included in the analysis, the
analysis is complete,

The first logical approximation would be to replace actual sandwich with
orthotropic material, The concepts of orthotropy actually may cover not only
the large family of sandwiches, but also other materials such as corrugated
shells, etc.

To give a systematical description of orthotropic analysis, attention will
again be directed to the mathematical structure of the analytical formulas for
the monocoque shells presented earlier in this section. This will make clear
what kind of modifications can be made to apply the same formulas (that were
derived for monocoque material) to the orthotropic shells.
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B7.3.4.3 Orthotropic Shells

A material is orthotropic if the characteristics of the materials are not
the same in two mutually orthogonal directions (two-dimensional space}. Such
material has different values for E, G, and u for each direction. Poisson's
ratio, u, also may be different in the case of bending and axial stresses. In the
majority of cases this difference is negligible, but to distinguish one from the
other, i will be designated for Poisson's ratio which corresponds to bending
stresses, and pu' for axial stresses. The behavior of the shell under loading is
a function of certain constants that depend upon the previously mentioned material
constants and geometry. The special case of orthotropy is isotropy (the material
characteristics in both directions of two-dimensional space are the same). To
see the dependence of stresses and deformations in shells upon previously
mentioned constants, a short review of isotropic concepts of shells is provided.
These constants are designated with extensional and bending rigidities.

I Extensional and Bending Rigidities

In the past, only isotropic monocoque shells were considered, and
numerous formulas were presented. The definitions for isotropic shells are
as follows:

Extensional rigidity

Et
B= 1o
Bending rigidity
_ Et?
D=T-m

B and D have appeared in many previous formulas.

The following characteristic stress formulas apply for rotationally
symmetric thin shells:
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— €.
N¢ = B(€¢+ ue)

€
No = B(t&'9 +p¢)

The bending loads are

R¢> d¢ RO
- pfL- 1 &
Me- D(Rg cos ¢ + ,uR¢ dqb)

The final stresses can be obtained as follows:

(1)

% 1-@2\B "D

For a monocoque section of rectangular shape

N M
a=—$+—£z
¢t t3
12
(2)
oo Mo
8-t B
1

The physical meaning of D and B is obvious if equations (1) and (2) are
compared.
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The componental stresses due to membrane forces are

EN N N
o =—9% __ - _E g 1-¥ 9 ¢
¢ (L-p3)B 1 - ¢ Et ixt A
o - ENG _ E N 1_‘”2 _ NG _NB
6 (1-w@)B 1-p2 "6 Et 1xt A
where
A=1xt
It is convenient to choose the width of the section strip that is equal to
unity.
The componental stresses due to bending:
20 =M¢z. E_ _ oy ,—F 12(1-p2)_12M£_=M9z
¢ D 1-p2 d" (1 - pd) Et3 T o1xt3 I
o M2 & g E_ 1201 Mgz Mgz
o D 1 - u? 07 (1 -u2) Et3 1x 3 I
where
1x
1=

Evidently, if stiffened or sandwich shell is being used, a modified B and D shall
be used in the equations, then all previously derived equations for monocoque
shells may be used for stiffened and sandwich shells. If the values from the
"transformed section' are used, then

A*E* LR b
B = H D=IE2
1-p
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In the preceding formulas u' # p is assumed.

II Orthotropic Characteristics

Now the orthotropy is defined if, for two mutually orthogonal main
directions, 1 and 2, the following constants are known or determined:

Dy, By, Uy, p,'t and shear rigidity DQ
1

Dy, By, iy, py and shear rigidity DQZ

To use the previously given formulas (for the isotropic case) for the
analysis of the orthotropic structures, the formulas must be modified. For
this purpose, a systematical modification of the primary and secondary solutions
will be provided in the following paragraph to make possible the use of the unit-
edge loading method for the orthotropic case. In the analysis of monocoque
shells, the shear distortions usually are neglected. With sandwich, in most
cases, such neglect is justified. The previously collected formulas for the
isotropic case do not include the shear distortion. Consequently, orthotropic
analyses which neglect the shear distortions will be examined first. Later,
an additional study will be presented which considers the distortions due to the
shear,

III Orthotropic Analysis, If Shear Distortions Are Neglected

A. Primary Solutions

It was previously stated that in most cases, the primary solutions
are membrane solutions. For the purpose of interaction, the following set of
values i8 needed ( considering axisymmetrically loaded shells of revolution).

No - membrane load in circumferential direction

N, - membrane load in meridional direction

¢
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u - displacement in the direction of tangent to the meridian

w - displacement in the direction of the normal-to-the-middle surface,.
Actually, having u and w, any componental displacements can be obtained from
the pure geometric relations if only the axisymmetrical cases are considered.
Consequently, for this purpose, it will be adequate to investigate u and w,

To determine N_ and N ,, all formulas that were presented for the
isotropic case can be used, beCause the membrane is a statically determinate

system and independent of the material properties.

When N 0 and N é are obtained, u and w can be obtained in the following
manner.

First determine the strains components (€

® and € 9) . For the isotropic
case, the correspondent formulas are

€ = 2 (N -p'Ne)

¢ Et ¢
.....j.‘-(N 'N)
= Et 0 H o

For the orthotropic case the same formulas may be written

1 '
€, = N | (N -~-u N )
¢ B¢“'“¢>“e) ¢ 676
€, _ i oy
8 = W(NB H¢N¢)
{2

Note: D=B -1-5
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Displacement can now be obtained from the following differential
equation:

-ucotop=R R €0=f(¢)

du
do 169 " 2

The solution of the equation above is

where C is the constant of integration to be determined from the condition at
the support., Then, the displacement {w) is obtained from the following equation:

€ =4 cotqb-‘L

o R R,

Consequently, for every symmetrically loaded shell of revolution the stresses
and deformations are determined for the orthotropic case,

B. Secondary Solutions

To obtain the secondary solutions, the formulas that were derived
for the isotropic case can be used and then, using the substitution of proper
constants, they can be transformed into formulas for the orthotropic case.
Generally, due to any edge disturbance (unit loading) the formulas give direct
solutions for

N¢, NG’ M, M()’ Q, B, and Ar

¢

in the férm of:

Solution = { edge disturbance) x (function of significant constant)
x (function of geometry).
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Cylindrical Shell - All formulas given in Tables B7, 3. 3-9 and
B7. 3. 3-10 can be modified if the following replacement is made:

J Ey(i ' ”xue)

kz_.l.‘._ 4“’3(1-1-12 _._1.‘_

- 2R D_
po_EE BT
12(1 - “2) X 12(1 - Hy ,llz)
- Et
B = — B =—_L~—
147 y 1-p'p'
x .
t2
D=B

Ex = the modulus of elasticity in longitudinal direction.

Ey = the modulus of elasticity in circumferential direction.

14" Orthotropic Analysis, If Shear Distortions Are Included

For this more complicated case, the solution may be found in Reference
4, which was considered as the basis for Paragraphs IV and V. Cylinders and
spheres only are are considered herein.

A. Cylindrical Shell

In the case of a cylinder constructed from a sandwich with relatively
low traverse shear rigidity, the shear distortion may not be negligible; there-
fore, an analysis is presented which includes shear distortion for a symmet-
rically loaded orthotropic sandwich cylinder.

The following nomenclature is used:

D , D = Flexural stiffnesses of the shell wall per inch of width
x of orthotropic shell in axial and circumferential directions,
respectively (in. -1b).

DQ = Shear stiffness in x-z plane per inch of width (1b/in,)

X
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Bx' B = Extensional stiffnesses of orthotropic shell wall in axial and
circumferential directions, respectively (1b/in.).

M_ = Moment acting in x direction (in. -1b/in.).

Qx = Transverse shear force acting in x-z plane (1b/in.).

“x' p_ = Poisson's ratio associated with bending in x and y directions,
respectively.

]
y’:. ¢ = Poisson’s ratio assoclated with extension in x and y directions,
respectively.

The derived solutions are presented in Tables B7.3.4-2 and B7. 3. 4-3.

B. Half Spheres

Based on Geckler's assumption for the half sphere, all formulas
derived for cylinders can be adapted for the spherical shell as well.

V Influence of Axial Forces on Bending in Cylinder

Usually it is assumed that the contribution of the axial force ( Ny} to the
bending deflection is negligible; however, for a cylinder with a relatively large
radius, the axial force may significantly contribute to the bending deflection,
Therefore, the preceding analysis was extended by the same author { Reference 4)
to include the effect of the axial force on the deflections. This leads to modifi-
cation of the formulas ( Tables B7. 3. 4-2 and B7. 3, 4-3) in the manner shown
in Table B7. 3. 4-4. The constants are slightly modified as follows:

1] 1
B (t-mm) . No
. D i

D 2
Q R x

2 X




TABLE B7.3.4-2 INFLUENCE COEFFICIENTS DUE TO EDGE LOADING M, IN

ORTHOTROPIC CYLINDER
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TABLE B7.3.4-3 INFLUENCE COEFFICIENTS DUE TO EDGE LOADING Q IN

ORTHOTROPIC CYLINDER
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TABLE B7.3.4-4 MODIFICATION OF TABLES B7. 3. 4-2 AND -3 TO
INCLUDE THE EFFECTS OF AXIAL FORCES ON BENDING

Quantities:
Formula {Formulas in Tables B7.3.4-2 and -3) Substitute
(4a? - A} (4 - AY
1
(A - 40%) (A2 - 44%)
emeo
4 hole Formula LTen [(4')/2 3m?) +(m 4)/2)111.\]
6 2(1’2 Nlu,‘; szo
7 Whole Formula »\ = M-gg:sx (8" +42) cos Px + 8 L+ ) osin P
2VD N P '
8 \Y s
9 A% S
10 Whole Formula wx 0 = =My 2V1)) (20t + 8 - 24%)
, dw 2 2 RO P
11 Whole Formula e =AMy VI (s + 7)) 0 s
ax <0
(4¢? - AY (494 - AY
12
(A} - 40?) (& - )
cm.\'q
15 w I i = — ~—=t p - 204X
5 hole Formula w DomE 'h};r [2m (m 4y )x]
-8X 2
; o1 ] _ gﬂsﬂ. .L o3 b JURE LDV
18 Whole Formula w VD p sin Px - S cos Px
19 \Y% S
20 v S
21 Whole Formula (-Qo/2VD) (a? + 512
22 Whole Formula

2VD

(%”)x:(, - (a2
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B = BYG ”X“Yl
4D R[4+ 20 :
p.4 DQ
X
B (1-u'u')
e ; V=44 a? +p8
Q

X

S = (B +a)V?

D

D
X

B7.3.5 UNSYMMETRICALLY LOADED SHELLS

Until now, the axisymmetrical cases have been treated with respect to
the geometry, material, and loading. The "unit-load method" was exclusively
used for the solution. It was shown that the most complex solutions are applied
to the shells without symmetry, loaded unsymmetrically. The first level of
simplification of the complex procedures would be the usage of axisymmetric
shell loaded unsymmetrically.

The scope of this manual does not permit presentation of the actual
derivations, but solutions for the most commonly appearing cases in engineering
will be presented in the remaining tables.

The shells are assumed to be thin enough to use the membrane theory.
These tables of solutions also provide the necessary information about the
loading and geometry.

B7.3.5.1 Shells of Revolution

The first level of simplification of the complex procedures would be
axisymmetric shells loaded unsymmetrically, Similarly, symmetrical shells
may have unsymmetrical boundaries, which will cause the symmetrical loading
to be no longer symmetrical.
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Table B7. 3. 5-1 presents some solutions for certain loadings for
spherical, conical, and cylindrical shells loaded unsymmetrically.

B7.3.5.2 Barrel Vaults

This paragraph presents the collection of different solutions for curved
panels of simple beam system. The geometry of curved panels is circular,
elliptical, cycloidal, parabolic, catenary, and special shape. The solutions
for different loadings are given in Tables B7. 3. 5-2, B7. 3. 5-3, and B7. 3. 5-4.
The shells under consideration are thin, and linear theory was the basis for
the derived formulas.



TABLE B7. 3.5-1 SPHERE, CONE, AND CYLINDER LQADED BY WIND LOADING
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TABLE B7.3.5-2 CURVED CIRCULAR PANELS, BARREL VAULTS

Deadweight Loading (q) X =0 Uniform Load on Projected Area
Y =qsin¢ Loading X =0, Y =p sin ¢ cos ¢
Z=qcos ¢ Z =p cos? ¢
ll
5 — x i / \ p—x n
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TABLE B7.3.5-3 CURVED ELLIPTICAL AND CYCLOIDAL PANELS, BARREL VAULTS

Elliptical Panel, Deadweight Loading

Cycloidal Panel, Dt_e.adweight Loading

The Radius of Curvature:

3
I
R ab
Where p = ab/(a? sin® ¢ + b? cos? ¢) 12
Loading Components:

X=0,Y=qsin¢, Z=qcos ¢

(For x and L, See Ref. 2)

;E_ =
N
L4

N
¢

The Radius of Curvature R = ¢ cos ¢

Loading Components:
Z=q cos ¢
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UL
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3
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TABLE B7.3.5-4 BARREL VAULTS

N¢ Nx . Nx’ N¢ Unit Normal Forces
‘>/ Z N Unit Central Shear
Nw ¢x
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TABLE B7.3.5-4 BARREL VAULTS ( Continued)
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TABLE B7.3.5-4 BARREL VAULTS ( Continued)
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TABLE B7.3.5-4 BARREL VAULTS ( Concluded)
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