SECTION B4.7
LATERAL BUCKLING OF BEAMS
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B4.7 LATERAL BUCKLING OF BEAMS

4.7.1 INTRODUCTION

A beam of general cross section which is bent in the plane of greatest
flexural rigidity may buckle in the plane perpendicular to the plane of greatest
flexural rigidity at a certain critical value of the load., Concern for lateral
buckling is more significant in the design of beams without lateral support when
the flexural rigidity of the beam in the plane of bending is large in comparison
with the lateral bending rigidity.

Consider the beam with two planes of symmetry shown in Figure 4.7-1.
This beam is assumed to be subjected to arbitrary loads acting perpendicular
to the xz plane, By assuming that a small lateral deflection occurs under the
action of these loads, the critical value of load can be obtained from the
differential equations of equilibrium for the deflected beam (Ref, 1).

Beams with various cross sections and particular cases of loading and
boundary conditions will be considered in this section.

4.7.1.1 General Cross Section

The general expression for the elastic buckling strength of beams can be
expressed by the following equation (Ref. 3).

CiﬂzEI f C 2
- v ] 2 A _ GJ(KL)
fCI‘ Sc (KL)Z ng + C3 k+ (ng+ C3 k)“+ 1 (1 t Tﬁcw

y
(1)
where:
fCr = critical stress for lateral buckling
E = modulus of elasticity, 1b/in,?
Iy = modulus of inertia of heam cross section about the y axis, in.*
L = distance between points of support against lateral bending and

twisting, in.
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FIGURE 4.7-1 LATERAL BUCKLING
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C_ = torsion warping constant, in,®

g = distance from shear center to point of application of transverse
load (positive when load is below shear center and negative
otherwise), in,

G = shear modulus of elasticity, Ib/in.?
J = torsion constant, in.?
Sc = secction modulus for stress in compression flange, in,?

i 9 .
k:e+2—I— f(x+y2)dA,m.
X A

e = distance from shear center to centroid, positive if between
centroid and compression flange, in.

C4,Cy, C3, K= constants which depend mainly on conditions of loading and support
for the beam (Table 4.7-1).

In the equation above, it is assumed that the lines of action of the loads
pass through the shear center and the centroid, and that the loads attach to the
beam in such a manner that their lines of action remain parallel to their initial
directions as the beam deflects. It is also assumed that the shear center lies
on a principal axis through the centroid.

The coefficients Cq, Cy, C3, and K are derived in Reference 3, They
depend mainly on the conditions of loading and support for the becam, The values
of Cy, Cy, C3, and K given in Table 4.7-~1 have been obtained from Reference 3,
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Table 4.7-1. Values of Coefficients in Formula for Elastic Buckling
Strength of Beams
VALUE OF COEFFICIENTS
CASE NO. LOADING RESTRAINT
K €, c, c,
M M SIMPLE SUPPORT e 10 - 1.0
i ( L.___.___._..;) 05
e— FIXED ‘ 1.0 - 1.0
M/ 1.0 131 —
M 2
2 (’ S A SIMPLE SUPPORT
} t FIXED 0.5 1.30 -
M 10 177 - 6.5
3 (@ SIMPLE SUPPORT
{ ' FIXED 0.5 1.78
M SIMPLE SUPPORT 1.0 233 _
4 ('(_.___.__13
' LPA FIXED 0.5 2.29 -
M M 1.0 2.5¢ —
5 (’ ) SIMPLE SUPPORT
+ f FIXED 0-5 2.23 -
¥ 1.0 113 0.45
6 SEREERED SIMPLE SUPPORT
1 i FIXED 0.5 0.97 0.29
L 1.0 1.30 1.55
7 i:g:n:[n_:g SIMPLE SUPPORT
FIXED 0.5 0.86 0.82
P
1.0 1,35 0.55 2.5
8 N SIMPLE SUPPORT
\ ! FIXED 0.5 1.07 0.42
[
i - 1.0 1.70 1.42
SIMPLE SUPPORT
9 %_:"i —_—
EIXED 0.5 1.04 0.84
P
L% Jéz F/y 1.0 1.04 0.42
10 (ae ____:f‘i___ﬂf'“% SIMPLE SUPPORT
¢ '
FIXED
CANTILEVER BEAMS
" . WARPING RESTRAINED
T T 1
AT SUPPORTED END ' 28 064
N
11t 1] WARPING RESTRAINED
12 Zﬂ”" - 1.0 2.08
AT SUPPORTED END
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4.7.2 SYMMETRICAL SECTIONS
For sections that are symmetrical about the horizontal axis or about

a point (channels, zee sections, etc.), the quantity k in equation (1) is equal
to zero. The expression for elastic buckling strength can then be written

Cy7EI C

' 2
. { j z _w GJ (KL)“
fcr 3 (KL)2 Cyg+ (Cyg) + I 1+ =0 (2)
¢ y w
Values of Cy, Cy, and K can be obtained from Table 4.7-1.

4.7.2.1 I-Beams
Given below are solutions for particular cases of load and boundary
conditions for I-beams. For cases not considered below, equation (2) should

be used.

I. Pure Bending

If an I-beam is subjected to couples Mo at the ends, the critical

value of the moment MO is

My = - jP‘I GJ (1 " h;—Tcwﬂz) (3)
S L Ty GJL '

This expression can be represented in the form

’EI GdJ

(M) = K L

(4)

where

Values of Ky are given in Table 4.7-2.
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Table 4.7-2. Values of the Factor K, for I-Beams in Pure Bending

L*GJ
4
= 0 0.1 1 2 6 8 10 12
W
K, w | 31.4 | 10.36) 766 | 5.85 | 5.11 | 4.70 | 4.43 ] 4.24
2
LGI | 4 20 24 28 22 36 40 100 |
EC :
W
K, a00) 3.83] 373! 366 350 3.55 { 350 { 3.20] 1

II. Cantilever Beam, Load at End

If a cantilever beam is subjected to a force applied at the centroid
of the end cross section, the critical value of the load P is

[T

P = Kz L (5)

cr

where

4,013

( . )2
i - v W
LIGJ

2
EgJ greater than 0.1, values of K, are given in Table

Y o LkGJ
4.7-3. For values of —R———-— less than 0.1, see Reference 1, page 258,
w

Kzz

For values of

for values of K,.
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Table 4.7-3. Values of the Factor K, for Cantilever Beams ol I-Scction

L2GJ
0.1 1 2 3 4 6 8
EC
w
K, 44 3 15.7 12.2 10.7 9.76 8.69 8.03
L%GJ
10 1 14 24 32 4
EC 2 16 0
w
K, 7.58 7.20 6.96 6.73 6.19 5.87 5.64

III.  Simply Supported Beam, Load at Middle

If a simply supported I-beam is subjected to a load P applied at
the centroid of the middle cross section, the critical value of the load P is

,EI GJ

P = K ——-Yﬂ,—— . (6)

Values of K3 obtained from Reference 1, page 264, are given in Table 4,7-4(a)

Table 4.7-4(a). Values of K3 for Simply Supported I-Beams With
Concentrated Load at Middle

Luad LGB
Applird w

AL 4 4 H 16 24 42 45
ppeyr
Flange a1 201 169 154 1o 149 4.8
Centronl HE 4 41,9 dhon 2108 RITEN 1 n ™S
Lower
Flunge 147 Tl REI BT R 254 KR
Luad L2 Gd B
Appligd w

At hd X0 913 1fin ESR BELL 160
Hpper
Flunge 1540 1.4 5.1 1 3 1504 15 6 th.oM
Centropd s 3 LAY 17.9 17.5 17 4 17 2 17 2
Leower
Flamn: 2.4 207 LA P} 19.3 [H 1= 7
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If lateral support is provided at the middle of the beam, values of K; are given
in Table 4.7-4(b) .

Table 4.7-4(b) . Values of the Factor K; for Lateral Support at Middle

2
IEJ:((:}J 0.4 4 8 16 32 96 128 200 400
w
Kj 466 154 114 86.4 69.2 54.5 52.4 49.8 47.4

If lateral support is provided at both ends of the beam, values of K3 are given
in Table 4.7-4(c).

Table 4.7-4(c). Values of the Factor K; for Lateral Support at Ends

2
}Eg_g_ 0.4 4 8 16 24 32 | 64 | 128 | 200 | 320
W

K, 268 | 88.8 | 65.5 | 50.2 | 43.6 | 40.2 | 34.1 | 30.7 | 29.4 | 28.4

IV. Simply Supported Beam, Uniform Load

If a simply supported I-beam is subjected to a uniform load q, the
critical value of this load can be expressed in the form

,EI GJ
(a . = K —7— (7)

Values of K; obtained from Reference 1, page 267, are given in Table 4.7-5(a).
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Table 4.7-5(a). Values of K; for Simply Supported I-Beams with Uniform Load

Load 2
L’ GJ/EC
Applied W
At 0.4 4 8 16 24 32 48
Upper
Flange 92.9 36.3 30.4 27.5 26.6 26.1 25.9

Centroid 143.0 53.0 42.6 36.3 33.8 32.6 31.5

Lower
Flange 223, 77.4 59.6 48.0 43.86 40.5 37.8
Load L? GJ/EC
Applied w
At 64 80 128 200 280 360 400
Upper
Flange 25.9 25.8 26.0 26.4 26.5 26.6 26.7

Centroid 30.5 30.1 29 .4 29.0 28.8 28.6 28.6

Lower
Flange 36.4 35.1 33.3 32.1 31.3 31.0 30.7

If the beam has lateral support at the middle, K, is given by Table 4.7-5(b).

Table 4.7-5(b) . Values of K; with Lateral Support at Middle

Lioad 2
L GJ/EC

Applied w

At 0.4 4 8 16 64 96 128 200
Upper
Flange 587 194 145 112 91.5 73.9 71.6 69.0
Centroid 673 221 164 126 101. 79.5 76.4 72.8
Lower
Flange 774 | 251 185 142 112 85.7 81.7 76.9
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If the beam has lateral support at both ends of the beam, K, is given by
Table 4.7-5(c) .

Table 4.7-5(c¢). Values of K4 with Lateral Support at Ends

2
LG 1h4 ] 4 8 16 32 96 | 128 | 200 | 400
EC
w
K, 488 | 161 | 119 | 91.3 | 73.0 | 58.0 | 55.8 | 53.5 | 512

4.7.2.2 Rectangular Beams

For a beam of rectangular section of width b and height h, the warping
rigidity Cw can be taken as zero; therefore, equation (2) becomes

Cym EI

2
R J 2 . GJ(KL)®
fcr Sc (KL)2 ng + (ng) + EEIy (8)
If the load is applied at the centroid, g = 0; therefore,
C 7 EIyGJ
Lr = 75T : (9)
c
: _3 _ 3 ;.1 .3 _ bhn?®
By taking G—8 E,J—O.31hb,I-12 hb,andSC 5
_ 1.86Cy Eb®
for © K Lh (10)
or
¢ - g EBE (11)
cr f Lh
where
K - 1.86C
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Values of Kf are given in Figure 4.7-2 and Table 4.7-6 for several load

cases. Yor cases not available in Table 4.7-6 and Figure 4.7-2, refer to
Table 4.7-1 for values of C; and K for use in equation 10, "

Equation 8 must be uscd for loads not applied at the centroid for any
of the given cases,

~
3.0 ST -
2.0 po— ¢ =
H - il i b
E—— B
T T T T T T T T T LTI
0 ¢.10 0.20 0.30 0.40 0.50

FIGURE 4.7-2 CONSTANTS IFOR DETERMINING THE LATERAL STABILITY
OF DEEP RECTANGULAR BEAMS
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Table 4.7-6. Constants for Determining the Lateral Stability of

Rectangular Beams

Cose Side View Top View K’
\ Via - : L r
\ /| = ¥
2 F — | 2 L N
\ Iy - N
P = L}Z
J4i 1Y ;E
3 T - — 3.7
\ 7 C—"TC _n
/. » L/2 N
I T
4 1 - 5.45
\ Y %% /2 f§
I TT T T TITTITIT
5  BESARBEEARES g _ % 2.09
L =1
. F T ATy iTe] | 2 ) N
L 3
I TITTIT T TITTITITIT
7 | BAASERIEIELEA] _ggggg_ 4.87
. ]
]
8 { i ] } % - 35%’ 2.50
T 1
] 4 N
9 J[_ [ X ﬁﬁ - 3.82
I l ]
10 f - ] e e e
T )
1 y 3
n - t } A\VVM 7.74
T 3 2
| B
n | c X ===
%= L =
| 2 3
s =] o, I
7.0
7 — 1
et
7 L 1
s 7 - 2 - 1| 2w
/
IBEEEREEEER] =
16 "% = 380
4
v | AT | . 3.90
—.____Q
2
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4.7.3 UNSYMMETRICAL I-SECTIONS
For I-beams symmetrical about the vertical axis, but unsymmetrical

about the horizontal axis and subjected to uniform bending moment, the following
approximate equation for the clastic buckling stress should be used (Ref. 3).

7 EI j c .
fc]c' Sc (KL)? e e Iy (1 " 1rEECW (8)




Section B4.7
15 April, 1971

Page 14
4.7.4 SPECIAL CONDITIONS

4,.7.4.1 Oblique Loads

The case of a beam subjected to a uniform bending moment that does
not lie in one of the principal planes of the cross section is discussed in
References 4 and 5. Reference 5 shows that the equation for the critical moment
takes the form of equation 1 with C; = C3= 1,0, Cy = 0. The quantity Iy is

replaced by the expressicn I}—II}-{/ I » in which ; and % denote principal axes and

the x axis is the axis normal to the plane of bending.

4.7.4,2 Nonuniform Cross Section

A concise solution for the lateral buckling strength of a tapered
rectangular beam, subjected to constant bending moment and simply supported
at the ends, is presented in Reference 6. Tapered cantilever I-beams have
been investigated experimentally in Reference 7.

4.7.4.3 S8pecial End Conditions

Solutions have been obtained (Ref. 8) for the buckling strength of
I-beams under a load (either uniform or a concentrated load at the center)
acting perpendicular to the principal plane having maximum bending rigidity and
with various degrees of restraint against rotation of the beam about either
plane. Each type of restraint was considered to vary between zero and complete
fixity. In all cases, the beams were considered to be fixed at the ends against
rotation about a longitudinal axis perpendicular to the plane of the cross section.

Frequently, a cantilever beam is simply the overhanging end of a beam
that extends over two or more supports. In this case, the supported end of the
cantilever beam may not be fixed against lateral bending of the beam flanges
but some restraint is supplied by continuity at the support. In such cases, a
conservative estimate of the buckling strength can be made by congidering the
warping constant, Cw, to be zero in the buckling formula,
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If a beam is continuous beyond one or both supports, the end conditions
for any one span are generally between the cases of complete fixity and simple
support covered in Table 1. The effcct of continuity has been discussed in
References 9 and 10,

4.7.4.4 Inelastic Buckling

It is explained in Reference 11 that it is possible to obtain a lower limit
to the theoretical buckling stress in the inelastic range by substituting the
tangent modulus, E " corresponding to the maximum stress in the beam for the

elastic modulus, E, in the elastic buckling formula. Tests on aluminum alloy
beams show that this method gives a close approximation to the experimental
buckling stress when the bending moment is constant along the length (Ref.

12 and 13). Tests of aluminum alloy beams subjected to unequal end moments,
with the ratio of the moment at one end to the moment at the other end varying
from 1.0 to -1.0, resulted in experimental critical stresses varying from 8
percent below to 39 percent above the values computed by the tangent modulus
method.
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