Titanium-Minimum Properties

\[F_{tu} = 80,000 \text{ psi} \]
\[F_{ty} = 70,000 \text{ psi} \]
\[E = 15.5 \times 10^6 \text{ psi} \]

Fig. B4.5.5.4-1 Minimum Bending Modulus of Rupture Curves for Symmetrical Sections Commercially Pure Annealed Titanium
Fig. B4.5.5.4-2 Minimum Bending Modulus of Rupture Curves for Symmetrical Sections Ti-8Mn Titanium Alloy
Fig. B4.5.5.4-3 Minimum Bending Modulus of Rupture Curves for Symmetrical Sections Ti-6Al-4V Titanium Alloy
Titanium-Minimum Properties

- $F_{tu} = 140,000$ psi
- $F_{ty} = 130,000$ psi
- $E = 15.5 \times 10^6$ psi
- Elongation = 12%

Fig. B4.5.5.4-4 Minimum Bending Modulus of Rupture Curves for Symmetrical Sections Ti-4Mn-4Al Titanium Alloy
Fig. B4.5.6.4-1 Minimum Plastic Bending Curves for Ti-8Mn Titanium Alloy
B4.5.6.4 Titanium-Minimum Properties

Fig. B4.5.6.4-2 Minimum Plastic Bending Curves Ti-8Mn Titanium Alloy
Fig. B4.5.6.4-3 Minimum Plastic Bending Curves for Ti-6Al-4V Titanium Alloy

- Ftu = 130,000 psi
- Fty = 120,000 psi
- E = 15.4 x 10^6 psi
- Elongation = 10%

Room Temperature

Stress-Strain Curve

Fb (ksi)

¢ (Inches/inch)

k = 2.0
k = 1.7
k = 1.5
k = 1.25
k = 1.0
B4.5.6.4 Titanium-Minimum Properties

![Diagram showing stress-strain curves for different values of k.](image)

- Room Temperature
- Stress-Strain Curve
- \(f_0 \) Curve

- \(F_{tu} = 130,000 \) psi
- \(F_{ty} = 120,000 \) psi
- \(E = 15.4 \times 10^6 \) psi
- Elongation = 10%

Fig. B4.5.6.4-4 Minimum Plastic Bending Curves Ti-6Al-4V Titanium Alloy
Graph to be furnished when available
Fig. B4.5.6.4-6 Minimum Plastic Bending Curves for Ti-4Mn-4Al Titanium Alloy
Graph to be furnished when available