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A 3.0.0 Combined Stresses and Stress Ratio

A 3.1.0 Combined Stresses

When an element of structure is subjected to combined stresses
such as tension, compression and shear, it is oftentimes necessary to
determine resultant maximum stress values and their respective princi-
pal axes.

The solution may be attained through the use of equations or the
graphical construction of Mohr's circle.
Relative Orientation and Equations of Combined Stresses

fx and fy are applied
normal” stresses,

fs is applied shear £
stress. 4

fnax and £, are the f

fs
s 44//.— max
resulting principal —

normal stresses. fmin

fsmax 18 the resulting fg
principal shear
stress.

+h
»®
Hh
»

6 1is the angle of
principal axes.

Sign Convention:

x )
‘ E
Tensile stress is ,
positive. f o
Compressive stress is ‘ Y A3
negative.
Shear stress is positive Fig. A 3.1.0-1
as shown.
Pogitive 6 is counter-
clockwise as shown.

Note:

This convention of signs for shearing stress is adopted for
this work only.
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A 3.1.0 Combined Stresses (Cont'd)
Distributed Stresses on a 45° Element
£
‘ I T Y 1 ¢
- . i
£, = £y
i -
fx
1 r——
fx
—— o
fg = d
| 1
Fig. A 3.1,0-2 Fig. A 3.1.0-3
Pure Tension Equal Biaxial Tension
ft. = fs

— g
fg = fy = -fx ! £, = -fg
{y Y
Fig. A 3.1.0-4 Fig. A 3.1.0«5
Equal Tension & Pure Shear

Compression
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A 3.1.0 Combined Stresses (Cont'd)

[y \/< z) ............ (1)

fmax =
£+ f £ - £
X y y 2
fmin = 2 - < X 2 ) + fS L R T I (2)
f The solution results in
- s two angles representing
TAN 29 £y - fy the principal axes of |*""°*""" (3
fmax and fiin,
<}———-—I'> f (Disregard Sign) ........ vee (B
Smax s
Constructing Mohr's Circle (for the stress condition shown in
Fig. A 3.1.0-6a)
£y + Shear
i Stress fs
fs ‘
fy ret— £y
~.right fon 1 A
(ay ¢ hand ~7N\ ¥
face W\ £s
—g 20
L9 !
0 c n
£ \ + Normal
max \\\\-_' Stress
£, + £
£ . S 4
min 2 (c)
(b) lt——— ——t]

Fig. A 3.1.0-6
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A 3.1.0 Combined Stresses (Cont'd)

1. Make a sketch of an element for which the normal and shearing
stresses are known and indicate on it the proper sense of these stresses.

2. Set up a rectangular co-ordinate system of axes where the horizontal
axis is the normal stress axis, and the vertical axis is the shearing
stress axis. Directions of positive axes are taken as usual, upward

and to the right.

3. Locate the center of the circle, which is on the horizontal axis at
a distance of (fyx + fy)/2 from the origin. Tensile stresses are posi-
tive, compressive stresses are negative.

4, From the right-hand face of the element prepared in step (1), read
off the values for fy and fg and plot the controlling point "A'". The

co-ordinate distances to this point are measured from the origin. The
sign of fx is positive if tensile, negative if compressive; that of fg
is positive if upward, negative if downward.

5. Draw the circle with center found in step (3) through controlling
point "A" found in step (4). The two points of intersection of the
circle with the normal-stress axis give the magnitudes and sign of the
two principal stresses, If an intercept is found to be positive, the
principal stress is tensile, and conversely.

6. To find the direction of the principal stresses, connect point "A"
located in step (4) with the intercepts found in step (5). The princi-
pal stress given by the particular intercept found in step (5) acts
normal to the line connecting this intercept point with the point "A"
found in step (4).

7. The solution of the problem may then be reached by orienting an
element with the sides parallel to the lines found in step (6) and by
indicating the principal stresses on this element,

To determine the maximum or the principal shearing stress and the
associated normal stress:

1. Determine the principal stresses and the planes on which they act
per previous procedure.

2. Prepare a sketch of an element with its corners located on the
principal axes. The diagonals of this element will thus coincide with
the directions of the principal stresses. (See Fig. A 3.1.0-7).

3. The magnitude of the maximum (principal) shearing stresses acting
on mutually perpendicular planes is equal to the radius of the circle.
These shearing stresses act along the faces of the element prepared in
step (2) toward the diagonal, which coincides with the direction of the
algebraically greater normal stress.
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A 3.1,0 Combined Stresses (Cont'd)

4., The normal stresses acting on all faces of the element are equal to
the average of the principal stresses, considered algebraically., The
magnitude and sign of these stresses are also given by the distance from
the origin of the co-ordinate system to the center of Mohr's circle,

\
\ fmin
Fig. A 3.1.0.7
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Mohr's Circle for Various Loading Conditions

Fig. A 3.1.0-8

Simple Tension

”i

Fig. A 3.1.0-9

ML

Simple Compression

+ £,

| £ - f
f - XY
Smax 2

——
- £, L— + fn
——-fy
et — fx

Fig, A 3,1.0-10 Biaxial Tension
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A 3.1.0 Combined Stresses (Cont'd)

Mohr's Circle for Various Loading

Conditions

£
N 11
;—- -:f = f
st Lo X y
1y
Point -
0"‘_fx fs=0 + £,
-— £,

Fig. A 3.1.0-11

Equal Biaxial Tension

A1

f

J [ + £

———— f

fmax

- —

- £ + £
f = «f £ = f
Dmin 8 Omax 8

Fig, A 3.1.0-13
Pure Shear

Lhbd
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Lq—fy

Fig. A 3.1.0-12

Equal Tension and Compression
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A 3.2.0 Stress Ratios, Interaction Curves, and Factor of Safety

A means of predicting structural failure under combined loading
without determining principal stresses is known as the interaction
method.

The basis for this method is as follows:

1. The strength under each simple loading condition (tension,
shear, bending, buckling, etc.) is determined by test or theory.

2. The combined loading condition is represented by either load or
stress ratios, "R'" where

APPLIED LOAD OR STRESS
FAILING LOAD OR STRESS

R =
Failing can mean yield, rupture, buckling, etc.

The effect of one loading R; on another simultaneous loading R, is
represented by an equation or interaction
curve involving R; and R;. The equation
or curve may have been determined by
theory, by test, or by a combination
of both.

A schematic interaction curve is
shown in Fig. A 3.2.0-1, Type of
material or size effects will not
influence it, This curve represents
all the possible combinations of R,
and R, that will cause failure.

Using the curve:

1. Let the value of R} and R,
locate point a,

2. R; and R; can increase Fig. A 3.2.0-1
proportionately until failure
occurs at point b.

3. If R} remains constant, R; can increase until failure occurs at
point c.
4, I R, remains constant, R; can increase until failure occurs

at point d.

5. The factor of safety for (2) is F. S. = (ob+oca)or (oh+oe), (or og+of)
and the factor of safety for (3) is F. S. = (fc+ fa).
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A 3.2.0 Stress Ratios, Interaction Curves, and Factor of Safety (Cont'd)

In general, the formula for the factor of safety stated analyti-

cally for interaction equations where the exponents are only 1 or 2
(one term may be missing) is as follows:

2
........... N €5
[R’-&- \/(R')2+ (R")Z}

F.S. =

where

R' designates the sum of all first-power ratios.

R'' designates the sum of all second-power ratios
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A 3.2.1 A Theoretical Approach to Interaction

For combining normal and shear stresses, the principal stress
equations are convenient to use.

Let F and Fg be defined as the failing stress, such as yielding
or rupture.

Let k=Fy/F; tests of most materials will show this ratio to vary
from 0.50 to 0.75.

2
fmax = §'+ \/Eg) + fi Ref Eq. (1) Sec. A 3.1.0

Divide by F; replace fg by RjFg, f£/F by R¢ and Fg/F by k.

The resulting equation when fp,ax = F is

2
R R
- -f 2f 2
1= >+ (? ) + (kRg)™ ..., e (1)

A plot of this equation for k = 0.50 and k = 0.70 is shown in
Fig. A 3.2,1-1,

Maximum Shear Stress Theory

2
= £ 2
fsmax = \/(2) + £ Ref Eq. (4) Sec. A 3.1.0

Divide by Fg; replace f by R¢F,f5/Fg by Ry and F/Fg by 1l/k.

The resulting equation when fg = F_ is

2 .
R
f 2
1=\/<ﬁ> +RS et reeaes Ceese e Gt eaeareeae (2)

A plot of this equation for k = 0,50 and k = 0.70 is shown in
Fig. A 3,2.,1-1,
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A 3.2.1 A Theoretical Approach to Interaction (Cont'd)

Conclusion

From the foregoing analysis, only Equation (2) with k = 0.5 is
valid for all values of Rg and Rg. It is conservatively safe to use
the resulting Equation (3) for values of k ranging from 0.5 to 0.7,
since all values within curve must also be within the other curves.
The use of other curves of Fig. A 3.2.1-1 may lead to unconservative
results.

2 2
Rf+RS:1 ........................... Ceseseneenss (3)

and the Factor of Safety

F.S. = e ()

\/ 2 2
Rf + RS

2
For the graphical solution for Factor of Safety, the curve Ry + R2 =1
of Fig. A 3.4.0-1 may be used.

2.0 Max. Shear Stress Theory

\ @O x=.s; R+ Rg =1
1.8

. 2 2 _
1.6 k .73 .SRf + RS =1

Max. Normal Stress Theory
1.4?-\
1.2} \\Zfi
Rg

©

- s. \é 2 7
k = .5; Rg +VRg" + Rg“ = 2

75 Re R + (1.4 R)?

©

®

1.
8 @ valid
(:) Partly Valid
6 (B®) Invalid
() Partly Vvalid
4
2
0 |
2. . } 0 1.2 1.4 1.6
Re

Fig. A 3.2.1-1
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A 3.3.0 Interaction for Beam-Columns
M
M
Fig. A 3.3,0-1 Fig. A 3,3,0-2
Sinusoidal Moment Curve Constant Moment Curve
P = applied load.
12 EI .
P, = — (Euler load). (Reference Section C 1.0.0).. (1)
L
antI
Py = buckling load = ————pg— et (2)
1.2
or applicable short columm formula. (Reference Section C 1.0.0)
M = maximum applied bending moment as a beam only.
M, = ultimate bending moment as a beam only. (Reference
Section B 4.0.0)
R, = %* (column Stress ratio) ..eeeeeeesenoenreesanenn . (3)
)
_ M s
Ry, = e {beam stress ratio) ...ieinevieninnnns veveaees (B
()
_B ., M
f = 3 + k 1
from which the interaction equation is:
R, + kRy =1 ..ouiiani, et et (5)
Py By
Let 1 = 7 CE (plasticity coefficient)............... (6)
e
For sinusoidal bending moment curves
1
k=1T P/Pe

Ry = (1= Ra) (1 = MRL) cennininineiniineinannnnn, (7
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A 3.3.0 Interaction for Beam-Columns (Cont'd)

Interaction curves for various wvalues of T are shown in
Fig. A 3.3.1-5.

For constant bending moment curves

1
k =
cos <§ \/P/Pe<)
Rp = (1 - R,) cos <% YA R, > ....................... . (8)

Interaction curves for various values of 17 are shown in Fig.
A 3.3.1-6,

Conclusion

Comparison of Figs. A 3.3.1-5 and A 3.3.1-6 show that significant
changes in shape of the primary bending moment diagram do not greatly
influence the interaction curves. Therefore, Figs. A 3.3.1-5 and
A 3.3,1-6 should be adequate for many types of simple beam columns.



Section A 3
10 July 1961
Page 14

A 3.3.1 Interaction for Eccentrically Loaded and Crooked Columns

M = Pe

j B ' ] _ﬂ_..c:::::::ZZJE:::::::::g.._—_

e

T—P " E

Eccentric Column Crooked Column
Fig. A 3.3.1-1 Fig. A 3.3.1-2

Reference Section A 3.3.0 for beam-column terms

e
Re = o= (eccentricity ratio) ... eirvrennnncaraeeens (1)
o
M,
e = 3. (base eccentricity, which is that required
o

for P, to induce a moment My) e (2

For a particular e, M would be a linear function of P as shown in
Fig. A 3.3.1-3. A family of such lines could be drawn which would
represent all eccentric columns.

To obtain Fig. A 3.3.1-4 (a nondimensional one-one diagram of the
same form as the interaction curves of Figs. A 3.3.1-5 and A 3.3.1-6),
P, M, and e of Fig. A 3.3,1-3 may be divided by P,, M, and e, respectively.

(DICD

-
=
o
N
"Ul"d

=

M = =
Ry -Mo

Fig. A 3.3.1-3 Fig. A 3.3.1-4
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A 3.3.1 Interaction for Eecentrically Loaded and Crooked Columns (Cont'd)

In using Fig. A 3.3.1-6 for eccentric columns and Fig. A 3.3.1-5
for crooked columns the following steps are taken:

1. Determine Py, the buckling load by x 2EtI/L2 or applicable
short column formula.

2. Calculate Py = TYZEI/LZ, the Euler 1load.

3. Determine My, the ultimate bending moment as a beam only
using Section B 4.0.0.

4. Calculate ey = M,/P,, the base eccentricity.

It

5. Calculate Rg e/eo.

Po/Pe, the plasticity coefficient.

6. Calculate 7m

7. Knowing R, and 7 , R, = P/P_ may be determined from the
appropriate curve. This value of R, corresponds to a Factor
of Safety of 1.0.

8. The ultimate load is Py = Py x Rj.
9. The Factor of Safety for an applied load P is

P
_u
F.So - P



= P/P
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A 3.3.1 1Interaction for Eccentrically Loaded and Crooked Columns (Cont'd)

1.

0.2 0.4 0.6 0.8

1.0

N [ ) e

7

O gy

Rb = M/Mo

Interaction Curves for Straight or Crooked Columns
with Sinusoidal Primary Bending Moment and Compression

Fig. A 3.3.1-5

10.0
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Interaction for Eccentrically Loaded and Crooked Columns (Cont'd)

= efe

R

NN 10.0

TTT

-
|
|
-
}.

altais 1 H

0.2 0.4 0.6 0.8 1.0

Interaction Curves for Columns with Constant Primary
Bending Moment and Axial or Eccentric Compression

Fig. A 3.3.1-6



Table A 3.4.0-1

sdIysuoTjeIay UOTJoBI23U] TBIADUIH (Q°'H'E€ V

STRUC - LOADING INTERACTION EQ. FOR FACTOR
TURE COMBINATION FIGURE EQUATION OF SAFETY REMARKS
f £
Compact { Biaxial Tension Rg = FE; R = Fz R 1 Use Ry or s
or Biaxial max whichever iS
Compression greater
Compact | Axial and A 3.4.0-1|Rg + Ry =1 1 For Ry, see
and Bending R, + Ry Sect. B 4.0.0
Round Stresses on Plastic
Tubes Bending
(a) 2, -2
Normal and Re + RS = 1 1 (b) for
Shear A 3,4.0-1 2 2 5 < Fg 75
Stresses Reg = Ry + Ry Rf + Rg ' T <725
For all other
values use max.
stress equa-
tions or Mohr's
circle
Round Bending, Tor- 9 9 2 1
Tubes sion and Com~ Ry + RY = (1 - Ry) 5
pression st R, + R + R
st
Stream~-| Bending and
Line Torsion A 3.4.0-1 Ry + Rge = 1 1
Tubes Rb + RSt
Bolts Tension and A 3.4.0-1 2 3
Shear A 3.4,0-2 Rt + RS =1

g1 28ed

1961 £10r 01

€ V¥ uo1109g
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A 3.4.0 General Interaction Relationships (Cont'd)

Table A 3.4.0-1 (Cont'd)

NOTE: Care must be exercised in determining whether to check Factor of

Safety for limit or ultimate loads.
(a) TFor round tubes in compression see Section C.3.0.0.

(b) See Section A 3,2.1 for discussion of range.
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A 3.4.0 General Interaction Relationships (Cont'd)

N
y \Q\z\\
ool —L /§<732\ N\
0.6 s +LR2 . /)>/\\ \\

/- /
R | R2+!R2=; _/ /

o
(%]
l—'ww
+
NW
fl
—t
]

AN
AN

4
{,///
R] + R? = T — ////
4

R1+R2=1 7

/

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ry

Interaction Curves
Fig. A 3.4.0-1
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A 3.4.0 General Interaction Relationships (Cont'd)
I I i N A P 1 1 1 1
AN-10 NOTE: Curves not
30 applicable where |-
shear nuts are
| | Interaction Pormula | [N used. Curves are E
5 2 ~ based on the
- Rs + Rt =1 results of com=- |
bined load tests |
\ of bolts with
25 \\ nuts finger- N
N, tight. -
N
20 \
AN-8 N
t
N
15 N \
|
AN-6
10 '\
; : t
AN-5 N \ \
5
-4 \
n N1 \
-3 A | [\
0

5 10 15 20 25
Shear Load - Kips

Fig, A 3.4.0-2
AN Steel Bolts (125,000 H.T.) Interaction Curves*
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A 3.5.0 Buckling of Rectangular Flat Plates Under Combined Loading

NOTE: See discus<ion in Sec. C 2.1.4
£
BEERERE I Y
= Sl (==
P‘—.-‘ - N s f
| — ] r b x
[ U Y W } L
Combined Loading
Fig. A 3.5.0-1
Table A 3.5.0-1
THEORY LOADING INTERACTION EQ FOR FACTOR
COMBINATION FIGURE EQUATION OF SAFETY
Biaxial Com- For plates that 1
pression A 3.5.0-2 1 buckle in sq. Ry + Ry
waves,
Ry + Ry =1
Longitudinal For Long 2
Compression and Plates
Shear Ro + R2 = 1 R, +V/RZ + 4R
E s c s
lastic Longitudinal
Compression A 3.5.0-2
and Bending
Bending and 9 1
Shear A 3.4.0-1]|R + Rs =1 /Rz + RZ
b 5
Bending, Shear, &
Transverse A 3.5,0-3
Compression
Longitudinal Com-
pression, Bending |A 3.5.0-2
and Transverse
Compression
Inelastic | Longitudinal 2 2 1
Compression A 3.40-1 [R"+R =1 > 2
and Shear ¢ Rc + RS
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A 3.5.0 Buckling of Rectangular Flat Plates Under Combined Loading

(Cont'd)

(a) (b)
1.0 1.0
a/b = 0.8 a/b = 1.0
0.8\\\\ o.an Q
—\Q\\\ \\\\
0.6 LN\ \‘\\T\ Fx = 0 . O . \\‘XRX =0
ANNNNXY e AN
0.4 \\\07\3\‘\ AN 0.6 AONCRN 0NN
X \ng\i\\\\\\ S \C\\X . 0.;53 \\ KE:L
0.2\ 0.7\ '\ N 2\ o7
ARAAMNIN QSRR ARRAATA
of 1 1) N\ ok
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Ry Ry
1.0 )
' ~— T~ a/b = 1.20 |
~ N
0.8 :‘\‘\S\ . £,
o e NN NG = 0]
ro LN NN N 0.1N, I E }b i’gfx
0.4 \ \0'3\ L) = | — =
NN XA k\\\\ RRRRRRRARRAREAR:
0.2 -\ Q?\\\\\\&
0.9 \ \[\[ \ AVATAN
b \ | (RR
4 1.

0.6 0.8 0

Interaction Curves for Simply Supported Flat Rectangular
Plates Under Combined Biaxial-Compression and Longitudinal Bending Loadings

Fig. A 3.5.0-2
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A 3.5.0 Buckling of Rectangular Flat Plates under Combined Loading
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0.4 [ ——
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Fig. A 3.5.0-2 (Cont'd)
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A 3.5.0 Buckling of Rectangular Flat Plates under Combined ILoading

(Cont'd)

1.0
]
—‘**"-[:::::::15\\\‘\\\ﬁ
NN
0.8 N i
R
c
AN
0.6
b \
0.8
0.4 N
1.0
0.2
-
0 Cowadilgs | ]
0 0,2 0.4 0.6 0.8 1.0
R

s

Interaction Curves for Simply Supported Long Flat Plates
Under Various Combinations of Shear, Bending, and Transverse Compression

Fig. A 3.5.0-3
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A 3.5.0 Buckling of Rectangular Flat Plates under Combined Loading
(Cont'd) 1.0
0T |
-—-"'_'_._—

41 0.2
1.0 7
: ltnlnn- 0
1.0 0.8 0.6 R¢ 0.4 0.2 0
R
0 OlllIl]lpl.z 0'4 s 0'6 0.8 1.0
1.0
0.2 F
0.4
N /0.9 //
c /// //
0.6 0.8
0.5/ /I Rp
0.8 0
1.0 A _/

Interaction Curves (Cont'd)

Fig. A 3.5.0-3



Table A 3.6.0-1

STRUC-
TURE

LOADING

COMBINATION

FIGURE

INTERACTION
EQUATION

EQ. FOR FACTOR
OF SAFETY

NOTES

Curved
Plates

Longitudinal
Compression
and Shear

A 3.4.0-1

2
Rg + Rg=1

2

22
R. + VR +4Rg

Longitudinal
Compression
and Internal
Pressure

Shear and
Internal
Pressure

A 3.6.0-1

R° -]RP|= 1

where

R:RcorRs

Circular
Cvlinders

Longitudinal
Compression
and Pure
Bending

.4.0-1

Re+ Ry =1

Longitudinal
Compression
and Torsion

A 3.4,.0-1

2
R-C + RstZ 1

Torsion and
Longitudinal
Tension

.0-1

3
R.st—R.tzl

Pure Bending
|__and Tension

A 3,4,0-1

1.5
Rp + Ri=1

Pure Bending
and Trans-

verse Shear

.0-1

R133 + R.ss: l

TUTIpEO] pourquo) 1epuy] Se3B[d poAdiny

pue TSIASPUT[AD TEBO134TIT1d 'SA9pUITAD JBINOITH JO 3urlldong (0°9°¢V

L7 9bey

9[61 ‘G| Adenaqgay

£y uol103g



Table A 3.6.0-1 (Cont'd)

STRUC-
TURE

LOADING
COMBINATION

FIGURE

INTERACTION
EQUATION

EQ. FOR FACTOR
OF SAFETY

NOTES

Circu-
lar
Cylin-
ders
(Cont 'd)

Longitudinal
Compression,
Pure Bending
and Transverse

Shear

3/ 3 3 _
Rc+ RS+Rb—1

Pure Bending
Torsion, and
Transverse
Shear

P a _
RP + (Rg + R ,) 1

Longitudinal
Compression,
Pure Bending
Transverse
Shear, and
Torsion

2 3/53.53 _
RetR .+ Rs+Rb =1

Longitudinal
Compression,
Pure Bending
and Torsion

ReHRp + VQRC+Rb)2+4R§t

Ellip-
tical
Cylin-
ders

Bending and
Transverse
Shear
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Table A 3.6.0-1 (Cont'd)

NOTES:

_ internal pressure
P external collapsing pressure

R = applied tensile stress
t compression buckling stress

S Rt < 0.8

Use fg and fy, each as maximum calculated values even though the locations

of the two maxima do not coincide. Use Fg as smaller of Fgy and 1.25 Fgt.

Use buckling stress in bending for Fy.

R R
When EiE < 1: When S < Lt
s Rst
R R
- 3 (st - 3 (st

P=3-72 IR p=ls+2 IR
s s

R R
1 st 1 st
q=3_— — q«__-_2+— —

2 (;s 2 RS
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A 3.6.0 Buckling of Circular Cylinders, Elliptical Cylinders, and
Curved Plates under Combined Loading (Cont'd)

1.0 ' -/ //

0.8 ‘iR ol __‘.}/ /72/
y ny

0.2 | //

¥

orrTT

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ry

Interaction Curves

Fig. A 3.6.0-1
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A3.7.0 Modified Stress-Strain Curves Due to Combined Loading
Effects

An analysis that uses a uniaxial stress-strain curve or material
properties derived from such a curve (analysis of beams, columns,
thermal effects, plastic bending, elastic and plastic buckling, Elastic-
Plastic Energy Theory of Section B4.5.7, etc) may require a modified
stress-strain curve or properties derived from a modified curve when
combined loading is involved. ILoads or stresses in one plane affect
the loads and stresses in other planes due to the Poisson effect. For
example, a tension member fails when the average stress, (P/A),
reaches the ultimate tensile stress F, . of the material, but a member
resisting combined loading may fail before the maximum principal
stress reaches Fy,; (Reference Section Al). When buckling or other
empirical parameters include combined loading effects, modified
stress-strain curves are not required.

Several methods of modifying uniaxial stress-strain curves have
been developed; the method presented here is derived from the Octa-

hedral Shear Stress Theory.

Assumptions & Conditions:

1. f1, f2 and f3, the three principal stresses, are in proportion;
1. e.,
£, = Ky 11 (1)
f3 = Kz (2)
K) # Ky

See Fig. A3.7.0-1 for direction of principal stresses,
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A3.7.0 Modified Stress-Strain Curves Due to Combined
Loading Effect (Cont'd)
3 3
r foct
b
| ”
i - £,
[
—y—] — —— D e o
{
e e = e o 9
ff P .
R { .
! 1 v 1/
f3 )

Figure A3.7.0-1

Directions of Principal Stresses

2. Prime (') denotes a modified value:

€ modified strain

E1

]

modified modulus of elasticity.

3. In this method, for any principal stress f;, the total strains
and modulus of elasticity are modified to include the effects
of the other principal stresses.

Procedure:

1. Calculate the principal stresses for a given load condition
(Reference Section A3, 1.0).

2. Determine the effective uniaxial stress:

) =V/éf (- 2% -ty - 1307+ (13 - 1) (3



Section A3
July 9, 1%64
Page 33

A3.7.0 Modified Stress-Strain Curves Due to Combined Loading

Effect (Cont'd)

and calculate an effective modulus of elasticity, Ei, by

_— £1
B = (ﬁ) E, %)

Enter the plastic stress-strain diagram for simple tension of
the material, if available, at the value of f. and determine E}Sp..
(See Figure .(A3.7.0-2b ) Otherwise, enter the simple tension
stress-strain curve at—fi and determine E; (see Figure
A3.7.0-2a ) by: P

t

Eyp = — 0 (%)
Sp El - El
e

Use this value of EL J and a value of o = 0.5, if not accurately

known, find ei from

1 P
& = (fl-ppfz-up%) (6)
p sp
E Eq f
i E = e—
8P1 ¢
P
pt. 1 pt. 1
f
i f;
Ft
P Ftp
\-— Plastic Secant
modulus
Secant
modulus
€ € prtp———— ﬂ‘ G _
le € ip _ ip
i
(a) Engineering stress-strain curve {b) Plastic stress-strain curve

Figure £3.7.0-2
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A3.7.0 Modified Stress-Strain Curves Due to Combined Loading

Effect (Cont'd)
5. Once E! has been found, ei

can be determined for any value

e

of f1 by:
L f}* )
le E‘l
6. Determine the total effect strain, ¢!, for each value of fl by:
€r = el + ei
(8)

1 1
€ P

7. Repeat all steps until sufficient points are obtained to construct
a plot of :El vs ei (see Figure A3.7.0-3 ) which is the modified

stress-strain curve,

Any Point {—

L} . 1
€4

p

@ [}
€4

€'1

Modified Stress Strain Diagram Due to Combined

Figure A3.7.0-3
Loading
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